Displaying similar documents to “Stability under deformations of Hermite-Einstein almost Kähler metrics”

Toric Hermitian surfaces and almost Kähler structures

Włodzimierz Jelonek (2007)

Annales Polonici Mathematici

Similarity:

The aim of this paper is to investigate the class of compact Hermitian surfaces (M,g,J) admitting an action of the 2-torus T² by holomorphic isometries. We prove that if b₁(M) is even and (M,g,J) is locally conformally Kähler and χ(M) ≠ 0 then there exists an open and dense subset U ⊂ M such that ( U , g | U ) is conformally equivalent to a 4-manifold which is almost Kähler in both orientations. We also prove that the class of Calabi Ricci flat Kähler metrics related with the real Monge-Ampère equation...

Some critical almost Kähler structures

Takashi Oguro, Kouei Sekigawa (2008)

Colloquium Mathematicae

Similarity:

We consider the set of all almost Kähler structures (g,J) on a 2n-dimensional compact orientable manifold M and study a critical point of the functional λ , μ ( J , g ) = M ( λ τ + μ τ * ) d M g with respect to the scalar curvature τ and the *-scalar curvature τ*. We show that an almost Kähler structure (J,g) is a critical point of - 1 , 1 if and only if (J,g) is a Kähler structure on M.

Almost hyper-Hermitian structures in bundle spaces over manifolds with almost contact 3 -structure

Francisco Martín Cabrera (1998)

Czechoslovak Mathematical Journal

Similarity:

We consider almost hyper-Hermitian structures on principal fibre bundles with one-dimensional fiber over manifolds with almost contact 3-structure and study relations between the respective structures on the total space and the base. This construction suggests the definition of a new class of almost contact 3-structure, which we called trans-Sasakian, closely connected with locally conformal quaternionic Kähler manifolds. Finally we give a family of examples of hypercomplex manifolds...

Hermitian curvature flow

Jeffrey Streets, Gang Tian (2011)

Journal of the European Mathematical Society

Similarity:

We define a functional for Hermitian metrics using the curvature of the Chern connection. The Euler–Lagrange equation for this functional is an elliptic equation for Hermitian metrics. Solutions to this equation are related to Kähler–Einstein metrics, and are automatically Kähler–Einstein under certain conditions. Given this, a natural parabolic flow equation arises. We prove short time existence and regularity results for this flow, as well as stability for the flow near Kähler–Einstein...

Nontrivial examples of coupled equations for Kähler metrics and Yang-Mills connections

Julien Keller, Christina Tønnesen-Friedman (2012)

Open Mathematics

Similarity:

We provide nontrivial examples of solutions to the system of coupled equations introduced by M. García-Fernández for the uniformization problem of a triple (M; L; E), where E is a holomorphic vector bundle over a polarized complex manifold (M, L), generalizing the notions of both constant scalar curvature Kähler metric and Hermitian-Einstein metric.

Canonical metrics on some domains of n

Fabio Zuddas (2008-2009)

Séminaire de théorie spectrale et géométrie

Similarity:

The study of the existence and uniqueness of a preferred Kähler metric on a given complex manifold M is a very important area of research. In this talk we recall the main results and open questions for the most important canonical metrics (Einstein, constant scalar curvature, extremal, Kähler-Ricci solitons) in the compact and the non-compact case, then we consider a particular class of complex domains D in n , the so-called Hartogs domains, which can be equipped with a natural Kaehler...

Some properties of para-Kähler-Walker metrics

Mustafa Özkan, Murat İşcan (2014)

Annales Polonici Mathematici

Similarity:

A Walker 4-manifold is a pseudo-Riemannian manifold (M₄,g) of neutral signature, which admits a field of parallel null 2-planes. We study almost paracomplex structures on 4-dimensional para-Kähler-Walker manifolds. In particular, we obtain conditions under which these almost paracomplex structures are integrable, and the corresponding para-Kähler forms are symplectic. We also show that Petean's example of a nonflat indefinite Kähler-Einstein 4-manifold is a special case of our constructions. ...