Extensions of generic measure-preserving actions
- [1] Université de Lyon CNRS UMR 5208 Institut Camille Jordan 43 boulevard du 11 novembre 1918 69622 Villeurbanne Cedex (France)
Annales de l’institut Fourier (2014)
- Volume: 64, Issue: 2, page 607-623
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMelleray, Julien. "Extensions of generic measure-preserving actions." Annales de l’institut Fourier 64.2 (2014): 607-623. <http://eudml.org/doc/275510>.
@article{Melleray2014,
abstract = {We show that, whenever $\Gamma $ is a countable abelian group and $\Delta $ is a finitely-generated subgroup of $\Gamma $, a generic measure-preserving action of $\Delta $ on a standard atomless probability space $(X, \mu )$ extends to a free measure-preserving action of $\Gamma $ on $(X, \mu )$. This extends a result of Ageev, corresponding to the case when $\Delta $ is infinite cyclic.},
affiliation = {Université de Lyon CNRS UMR 5208 Institut Camille Jordan 43 boulevard du 11 novembre 1918 69622 Villeurbanne Cedex (France)},
author = {Melleray, Julien},
journal = {Annales de l’institut Fourier},
keywords = {Measure-preserving action; Baire category; Polish group; measure-preserving group action},
language = {eng},
number = {2},
pages = {607-623},
publisher = {Association des Annales de l’institut Fourier},
title = {Extensions of generic measure-preserving actions},
url = {http://eudml.org/doc/275510},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Melleray, Julien
TI - Extensions of generic measure-preserving actions
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 2
SP - 607
EP - 623
AB - We show that, whenever $\Gamma $ is a countable abelian group and $\Delta $ is a finitely-generated subgroup of $\Gamma $, a generic measure-preserving action of $\Delta $ on a standard atomless probability space $(X, \mu )$ extends to a free measure-preserving action of $\Gamma $ on $(X, \mu )$. This extends a result of Ageev, corresponding to the case when $\Delta $ is infinite cyclic.
LA - eng
KW - Measure-preserving action; Baire category; Polish group; measure-preserving group action
UR - http://eudml.org/doc/275510
ER -
References
top- O. N. Ageev, Conjugacy of a group action to its inverse, Mat. Zametki 45 (1989), 3-11, 127 Zbl0701.28008MR1001691
- O. N. Ageev, The generic automorphism of a Lebesgue space conjugate to a -extension for any finite abelian group , Dokl. Akad. Nauk 374 (2000), 439-442 Zbl1044.37003MR1798480
- O. N. Ageev, On the genericity of some nonasymptotic dynamic properties, Uspekhi Mat. Nauk 58 (2003), 177-178 Zbl1069.37001MR1992135
- M. A. Akcoglu, R. V. Chacon, T. Schwartzbauer, Commuting transformations and mixing, Proc. Amer. Math. Soc. 24 (1970), 637-642 Zbl0197.04001MR254212
- R. V. Chacon, T. Schwartzbauer, Commuting point transformations, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 11 (1969), 277-287 Zbl0165.18903MR241600
- Matthew Foreman, Benjamin Weiss, An anti-classification theorem for ergodic measure preserving transformations, J. Eur. Math. Soc. (JEMS) 6 (2004), 277-292 Zbl1063.37004MR2060477
- Su Gao, Invariant descriptive set theory, 293 (2009), CRC Press, Boca Raton, FL Zbl1154.03025MR2455198
- E. Glasner, J.-P. Thouvenot, B. Weiss, Every countable group has the weak Rohlin property, Bull. London Math. Soc. 38 (2006), 932-936 Zbl1116.28013MR2285247
- Eli Glasner, Jonathan L. King, A zero-one law for dynamical properties, Topological dynamics and applications (Minneapolis, MN, 1995) 215 (1998), 231-242, Amer. Math. Soc., Providence, RI Zbl0909.28014MR1603201
- K.A. Hirsch, On infinite soluble groups. IV., J. Lond. Math. Soc. 27 (1952), 81-85 Zbl0046.02003MR44526
- Alexander S. Kechris, Classical descriptive set theory, 156 (1995), Springer-Verlag, New York Zbl0819.04002MR1321597
- Alexander S. Kechris, Global aspects of ergodic group actions, 160 (2010), American Mathematical Society, Providence, RI Zbl1189.37001MR2583950
- Jonathan King, The commutant is the weak closure of the powers, for rank- transformations, Ergodic Theory Dynam. Systems 6 (1986), 363-384 Zbl0595.47005MR863200
- Jonathan L. F. King, The generic transformation has roots of all orders, Colloq. Math. 84/85 (2000), 521-547 Zbl0972.37001MR1784212
- Julien Melleray, Todor Tsankov, Generic representations of abelian groups and extreme amenability, (2011) Zbl1279.43002MR3096634
- Derek J. S. Robinson, A course in the theory of groups, 80 (1996), Springer-Verlag, New York Zbl0836.20001MR1357169
- Thierry de la Rue, José de Sam Lazaro, Une transformation générique peut être insérée dans un flot, Ann. Inst. H. Poincaré Probab. Statist. 39 (2003), 121-134 Zbl1082.37007MR1959844
- Sławomir Solecki, Closed subgroups generated by generic measure automorphisms, (2012) Zbl06309241MR3199803
- A. M. Stepin, A. M. Eremenko, Nonuniqueness of an inclusion in a flow and the vastness of a centralizer for a generic measure-preserving transformation, Mat. Sb. 195 (2004), 95-108 Zbl1082.37006MR2138483
- S. V. Tikhonov, Embeddings of lattice actions in flows with multidimensional time, Mat. Sb. 197 (2006), 97-132 Zbl1155.37004MR2230134
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.