Extensions of generic measure-preserving actions

Julien Melleray[1]

  • [1] Université de Lyon CNRS UMR 5208 Institut Camille Jordan 43 boulevard du 11 novembre 1918 69622 Villeurbanne Cedex (France)

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 2, page 607-623
  • ISSN: 0373-0956

Abstract

top
We show that, whenever Γ is a countable abelian group and Δ is a finitely-generated subgroup of Γ , a generic measure-preserving action of Δ on a standard atomless probability space ( X , μ ) extends to a free measure-preserving action of Γ on ( X , μ ) . This extends a result of Ageev, corresponding to the case when Δ is infinite cyclic.

How to cite

top

Melleray, Julien. "Extensions of generic measure-preserving actions." Annales de l’institut Fourier 64.2 (2014): 607-623. <http://eudml.org/doc/275510>.

@article{Melleray2014,
abstract = {We show that, whenever $\Gamma $ is a countable abelian group and $\Delta $ is a finitely-generated subgroup of $\Gamma $, a generic measure-preserving action of $\Delta $ on a standard atomless probability space $(X, \mu )$ extends to a free measure-preserving action of $\Gamma $ on $(X, \mu )$. This extends a result of Ageev, corresponding to the case when $\Delta $ is infinite cyclic.},
affiliation = {Université de Lyon CNRS UMR 5208 Institut Camille Jordan 43 boulevard du 11 novembre 1918 69622 Villeurbanne Cedex (France)},
author = {Melleray, Julien},
journal = {Annales de l’institut Fourier},
keywords = {Measure-preserving action; Baire category; Polish group; measure-preserving group action},
language = {eng},
number = {2},
pages = {607-623},
publisher = {Association des Annales de l’institut Fourier},
title = {Extensions of generic measure-preserving actions},
url = {http://eudml.org/doc/275510},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Melleray, Julien
TI - Extensions of generic measure-preserving actions
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 2
SP - 607
EP - 623
AB - We show that, whenever $\Gamma $ is a countable abelian group and $\Delta $ is a finitely-generated subgroup of $\Gamma $, a generic measure-preserving action of $\Delta $ on a standard atomless probability space $(X, \mu )$ extends to a free measure-preserving action of $\Gamma $ on $(X, \mu )$. This extends a result of Ageev, corresponding to the case when $\Delta $ is infinite cyclic.
LA - eng
KW - Measure-preserving action; Baire category; Polish group; measure-preserving group action
UR - http://eudml.org/doc/275510
ER -

References

top
  1. O. N. Ageev, Conjugacy of a group action to its inverse, Mat. Zametki 45 (1989), 3-11, 127 Zbl0701.28008MR1001691
  2. O. N. Ageev, The generic automorphism of a Lebesgue space conjugate to a G -extension for any finite abelian group G , Dokl. Akad. Nauk 374 (2000), 439-442 Zbl1044.37003MR1798480
  3. O. N. Ageev, On the genericity of some nonasymptotic dynamic properties, Uspekhi Mat. Nauk 58 (2003), 177-178 Zbl1069.37001MR1992135
  4. M. A. Akcoglu, R. V. Chacon, T. Schwartzbauer, Commuting transformations and mixing, Proc. Amer. Math. Soc. 24 (1970), 637-642 Zbl0197.04001MR254212
  5. R. V. Chacon, T. Schwartzbauer, Commuting point transformations, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 11 (1969), 277-287 Zbl0165.18903MR241600
  6. Matthew Foreman, Benjamin Weiss, An anti-classification theorem for ergodic measure preserving transformations, J. Eur. Math. Soc. (JEMS) 6 (2004), 277-292 Zbl1063.37004MR2060477
  7. Su Gao, Invariant descriptive set theory, 293 (2009), CRC Press, Boca Raton, FL Zbl1154.03025MR2455198
  8. E. Glasner, J.-P. Thouvenot, B. Weiss, Every countable group has the weak Rohlin property, Bull. London Math. Soc. 38 (2006), 932-936 Zbl1116.28013MR2285247
  9. Eli Glasner, Jonathan L. King, A zero-one law for dynamical properties, Topological dynamics and applications (Minneapolis, MN, 1995) 215 (1998), 231-242, Amer. Math. Soc., Providence, RI Zbl0909.28014MR1603201
  10. K.A. Hirsch, On infinite soluble groups. IV., J. Lond. Math. Soc. 27 (1952), 81-85 Zbl0046.02003MR44526
  11. Alexander S. Kechris, Classical descriptive set theory, 156 (1995), Springer-Verlag, New York Zbl0819.04002MR1321597
  12. Alexander S. Kechris, Global aspects of ergodic group actions, 160 (2010), American Mathematical Society, Providence, RI Zbl1189.37001MR2583950
  13. Jonathan King, The commutant is the weak closure of the powers, for rank- 1 transformations, Ergodic Theory Dynam. Systems 6 (1986), 363-384 Zbl0595.47005MR863200
  14. Jonathan L. F. King, The generic transformation has roots of all orders, Colloq. Math. 84/85 (2000), 521-547 Zbl0972.37001MR1784212
  15. Julien Melleray, Todor Tsankov, Generic representations of abelian groups and extreme amenability, (2011) Zbl1279.43002MR3096634
  16. Derek J. S. Robinson, A course in the theory of groups, 80 (1996), Springer-Verlag, New York Zbl0836.20001MR1357169
  17. Thierry de la Rue, José de Sam Lazaro, Une transformation générique peut être insérée dans un flot, Ann. Inst. H. Poincaré Probab. Statist. 39 (2003), 121-134 Zbl1082.37007MR1959844
  18. Sławomir Solecki, Closed subgroups generated by generic measure automorphisms, (2012) Zbl06309241MR3199803
  19. A. M. Stepin, A. M. Eremenko, Nonuniqueness of an inclusion in a flow and the vastness of a centralizer for a generic measure-preserving transformation, Mat. Sb. 195 (2004), 95-108 Zbl1082.37006MR2138483
  20. S. V. Tikhonov, Embeddings of lattice actions in flows with multidimensional time, Mat. Sb. 197 (2006), 97-132 Zbl1155.37004MR2230134

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.