A group action on Losev-Manin cohomological field theories
Sergey Shadrin[1]; Dimitri Zvonkine[2]
- [1] Korteweg-de Vries Instituut voor Wiskunde, Universiteit van Amsterdam, Postbus 94248, 1090 GE Amsterdam, Nederland
- [2] Institut mathématique de Jussieu, Université Paris VI, 175, rue du Chevaleret, 75013 Paris, France and Stanford University Department of Mathematics Building 380, Sloan Hall Stanford, California 94305, USA
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 7, page 2719-2743
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topShadrin, Sergey, and Zvonkine, Dimitri. "A group action on Losev-Manin cohomological field theories." Annales de l’institut Fourier 61.7 (2011): 2719-2743. <http://eudml.org/doc/275514>.
@article{Shadrin2011,
abstract = {We discuss an analog of the Givental group action for the space of solutions of the commutativity equation. There are equivalent formulations in terms of cohomology classes on the Losev-Manin compactifications of genus $0$ moduli spaces; in terms of linear algebra in the space of Laurent series; in terms of differential operators acting on Gromov-Witten potentials; and in terms of multi-component KP tau-functions. The last approach is equivalent to the Losev-Polyubin classification that was obtained via dressing transformations technique.},
affiliation = {Korteweg-de Vries Instituut voor Wiskunde, Universiteit van Amsterdam, Postbus 94248, 1090 GE Amsterdam, Nederland; Institut mathématique de Jussieu, Université Paris VI, 175, rue du Chevaleret, 75013 Paris, France and Stanford University Department of Mathematics Building 380, Sloan Hall Stanford, California 94305, USA},
author = {Shadrin, Sergey, Zvonkine, Dimitri},
journal = {Annales de l’institut Fourier},
keywords = {cohomological field theory; commutativity equation; Losev-Manin space; Givental’s group; Gromov-Witten theory; Kadomtsev-Petviashvili hierarchy; Frobenius manifolds; Losev-Manin compactification; Givental's group action},
language = {eng},
number = {7},
pages = {2719-2743},
publisher = {Association des Annales de l’institut Fourier},
title = {A group action on Losev-Manin cohomological field theories},
url = {http://eudml.org/doc/275514},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Shadrin, Sergey
AU - Zvonkine, Dimitri
TI - A group action on Losev-Manin cohomological field theories
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 7
SP - 2719
EP - 2743
AB - We discuss an analog of the Givental group action for the space of solutions of the commutativity equation. There are equivalent formulations in terms of cohomology classes on the Losev-Manin compactifications of genus $0$ moduli spaces; in terms of linear algebra in the space of Laurent series; in terms of differential operators acting on Gromov-Witten potentials; and in terms of multi-component KP tau-functions. The last approach is equivalent to the Losev-Polyubin classification that was obtained via dressing transformations technique.
LA - eng
KW - cohomological field theory; commutativity equation; Losev-Manin space; Givental’s group; Gromov-Witten theory; Kadomtsev-Petviashvili hierarchy; Frobenius manifolds; Losev-Manin compactification; Givental's group action
UR - http://eudml.org/doc/275514
ER -
References
top- B. Bakalov, T. Milanov, -constraints for singularities of type Zbl1277.53094
- S. Barannikov, Non-commutative periods and mirror symmetry in higher dimensions, Commun. Math. Phys. 228 (2002), 281-325 Zbl1010.32011MR1911737
- Yu. Bayer, Stability Conditions, Wall-Crossing and Weighted Gromov-Witten Invariants, Mosc. Math. J. 9 (2009), 3-32 Zbl1216.14051MR2567394
- A. Chiodo, D. Zvonkine, Twisted Gromov-Witten r-spin potential and Givental’s quantization Zbl1204.81099
- T. Coates, Y. Ruan, Quantum Cohomology and Crepant Resolutions: A Conjecture Zbl1275.53083
- R. Dijkgraaf, E. Verlinde, H. Verlinde, Topological strings in , Nuclear Phys. B 352 (1991), 59-86 Zbl0783.58088MR1103047
- B. Dubrovin, Geometry of D topological field theories, Integrable systems and quantum groups (Montecatini Terme, 1993) 1620 (1996), 120-348, Springer, Berlin Zbl0841.58065MR1397274
- B. Dubrovin, Y. Zhang, Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants
- C. Faber, S. Shadrin, D. Zvonkine, Tautological relations and the r-spin Witten conjecture Zbl1203.53090
- E. Feigin, J. van de Leur, S. Shadrin, Givental symmetries of Frobenius manifolds and multi-component KP tau-functions Zbl1204.53076
- A. Givental, Symplectic geometry of Frobenius structures, Mosc. Math. J. 1 (2001), 551-568 Zbl1008.53072
- A. Givental, Gromov–Witten invariants and quantization of quadratic hamiltonians, Frobenius manifolds (2004), 91-112, Vieweg, Wiesbaden Zbl1075.53091
- C. Hertling, Frobenius manifolds and moduli spaces for singularities, (2002), Cambridge University Press, Cambridge Zbl1023.14018MR1924259
- V. G. Kac, J. W. van de Leur, The -component KP hierarchy and representation theory, Important developments in soliton theory (1993), 302-343, Springer, Berlin Zbl0843.35105MR1280480
- V. G. Kac, J. W. van de Leur, The -component KP hierarchy and representation theory, J. Math. Phys. 44 (2003), 3245-3293 Zbl1062.37071MR2006751
- M. Kontsevich, Y. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994), 525-562 Zbl0853.14020MR1291244
- Y.-P. Lee, Invariance of tautological equations I: conjectures and applications, J. Eur. Math. Soc. (JEMS) 10 (2008), 399-413 Zbl1170.14021MR2390329
- Y.-P. Lee, Invariance of tautological equations II: Gromov–Witten theory (with Appendix A by Y. Iwao and Y.-P. Lee), J. Amer. Math. Soc. 22 (2009), 331-352 Zbl1206.14078MR2476776
- J. van de Leur, Twisted loop group orbit and solutions of the WDVV equations, J. Amer. Math. Soc. 2001, 551-573 Zbl0991.37042MR1836730
- A. Losev, On “Hodge” topological strings at genus zero, JETP Lett. 65 (1997), 386-392
- A. Losev, Hodge strings and elements of K. Saito’s theory of primitive form, Topological field theory, primitive forms and related topics 160 (1999), 305-335, Birkhäuser, Boston Zbl1059.14016MR1653030
- A. Losev, Y. Manin, New moduli spaces of pointed curves and pencils of flat connections, Mich. Math. J. 48 (2000), Spec. Vol., 443-472 Zbl1078.14536MR1786500
- A. Losev, I. Polyubin, On compatibility of tensor products on solutions to commutativity and WDVV equations, JETP Lett. 73 (2001), 53-58
- A. Losev, I. Polyubin, Commutativity equations and dressing transformations, JETP Lett. 77 (2003), 53-57
- Yu. I. Manin, Frobenius manifolds, quantum cohomology, and moduli spaces, 47 (1999), American Mathematical Society, Providence, RI Zbl0952.14032MR1702284
- S. Shadrin, BCOV theory via Givental group action on cohomological field theories, Mosc. Math. J. 9 (2009), 411-429 Zbl1184.14070MR2568443
- E. Witten, On the structure of the topological phase of two-dimensional gravity, Nuclear Phys. B 340 (1990), 281-332 MR1068086
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.