A group action on Losev-Manin cohomological field theories

Sergey Shadrin[1]; Dimitri Zvonkine[2]

  • [1] Korteweg-de Vries Instituut voor Wiskunde, Universiteit van Amsterdam, Postbus 94248, 1090 GE Amsterdam, Nederland
  • [2] Institut mathématique de Jussieu, Université Paris VI, 175, rue du Chevaleret, 75013 Paris, France and Stanford University Department of Mathematics Building 380, Sloan Hall Stanford, California 94305, USA

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 7, page 2719-2743
  • ISSN: 0373-0956

Abstract

top
We discuss an analog of the Givental group action for the space of solutions of the commutativity equation. There are equivalent formulations in terms of cohomology classes on the Losev-Manin compactifications of genus  0 moduli spaces; in terms of linear algebra in the space of Laurent series; in terms of differential operators acting on Gromov-Witten potentials; and in terms of multi-component KP tau-functions. The last approach is equivalent to the Losev-Polyubin classification that was obtained via dressing transformations technique.

How to cite

top

Shadrin, Sergey, and Zvonkine, Dimitri. "A group action on Losev-Manin cohomological field theories." Annales de l’institut Fourier 61.7 (2011): 2719-2743. <http://eudml.org/doc/275514>.

@article{Shadrin2011,
abstract = {We discuss an analog of the Givental group action for the space of solutions of the commutativity equation. There are equivalent formulations in terms of cohomology classes on the Losev-Manin compactifications of genus $0$ moduli spaces; in terms of linear algebra in the space of Laurent series; in terms of differential operators acting on Gromov-Witten potentials; and in terms of multi-component KP tau-functions. The last approach is equivalent to the Losev-Polyubin classification that was obtained via dressing transformations technique.},
affiliation = {Korteweg-de Vries Instituut voor Wiskunde, Universiteit van Amsterdam, Postbus 94248, 1090 GE Amsterdam, Nederland; Institut mathématique de Jussieu, Université Paris VI, 175, rue du Chevaleret, 75013 Paris, France and Stanford University Department of Mathematics Building 380, Sloan Hall Stanford, California 94305, USA},
author = {Shadrin, Sergey, Zvonkine, Dimitri},
journal = {Annales de l’institut Fourier},
keywords = {cohomological field theory; commutativity equation; Losev-Manin space; Givental’s group; Gromov-Witten theory; Kadomtsev-Petviashvili hierarchy; Frobenius manifolds; Losev-Manin compactification; Givental's group action},
language = {eng},
number = {7},
pages = {2719-2743},
publisher = {Association des Annales de l’institut Fourier},
title = {A group action on Losev-Manin cohomological field theories},
url = {http://eudml.org/doc/275514},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Shadrin, Sergey
AU - Zvonkine, Dimitri
TI - A group action on Losev-Manin cohomological field theories
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 7
SP - 2719
EP - 2743
AB - We discuss an analog of the Givental group action for the space of solutions of the commutativity equation. There are equivalent formulations in terms of cohomology classes on the Losev-Manin compactifications of genus $0$ moduli spaces; in terms of linear algebra in the space of Laurent series; in terms of differential operators acting on Gromov-Witten potentials; and in terms of multi-component KP tau-functions. The last approach is equivalent to the Losev-Polyubin classification that was obtained via dressing transformations technique.
LA - eng
KW - cohomological field theory; commutativity equation; Losev-Manin space; Givental’s group; Gromov-Witten theory; Kadomtsev-Petviashvili hierarchy; Frobenius manifolds; Losev-Manin compactification; Givental's group action
UR - http://eudml.org/doc/275514
ER -

References

top
  1. B. Bakalov, T. Milanov, W N + 1 -constraints for singularities of type A N  Zbl1277.53094
  2. S. Barannikov, Non-commutative periods and mirror symmetry in higher dimensions, Commun. Math. Phys. 228 (2002), 281-325 Zbl1010.32011MR1911737
  3. Yu. Bayer, Stability Conditions, Wall-Crossing and Weighted Gromov-Witten Invariants, Mosc. Math. J. 9 (2009), 3-32 Zbl1216.14051MR2567394
  4. A. Chiodo, D. Zvonkine, Twisted Gromov-Witten r-spin potential and Givental’s quantization Zbl1204.81099
  5. T. Coates, Y. Ruan, Quantum Cohomology and Crepant Resolutions: A Conjecture Zbl1275.53083
  6. R. Dijkgraaf, E. Verlinde, H. Verlinde, Topological strings in d &lt; 1 , Nuclear Phys. B 352 (1991), 59-86 Zbl0783.58088MR1103047
  7. B. Dubrovin, Geometry of 2 D topological field theories, Integrable systems and quantum groups (Montecatini Terme, 1993) 1620 (1996), 120-348, Springer, Berlin Zbl0841.58065MR1397274
  8. B. Dubrovin, Y. Zhang, Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants 
  9. C. Faber, S. Shadrin, D. Zvonkine, Tautological relations and the r-spin Witten conjecture Zbl1203.53090
  10. E. Feigin, J. van de Leur, S. Shadrin, Givental symmetries of Frobenius manifolds and multi-component KP tau-functions Zbl1204.53076
  11. A. Givental, Symplectic geometry of Frobenius structures, Mosc. Math. J. 1 (2001), 551-568 Zbl1008.53072
  12. A. Givental, Gromov–Witten invariants and quantization of quadratic hamiltonians, Frobenius manifolds (2004), 91-112, Vieweg, Wiesbaden Zbl1075.53091
  13. C. Hertling, Frobenius manifolds and moduli spaces for singularities, (2002), Cambridge University Press, Cambridge Zbl1023.14018MR1924259
  14. V. G. Kac, J. W. van de Leur, The n -component KP hierarchy and representation theory, Important developments in soliton theory (1993), 302-343, Springer, Berlin Zbl0843.35105MR1280480
  15. V. G. Kac, J. W. van de Leur, The n -component KP hierarchy and representation theory, J. Math. Phys. 44 (2003), 3245-3293 Zbl1062.37071MR2006751
  16. M. Kontsevich, Y. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994), 525-562 Zbl0853.14020MR1291244
  17. Y.-P. Lee, Invariance of tautological equations I: conjectures and applications, J. Eur. Math. Soc. (JEMS) 10 (2008), 399-413 Zbl1170.14021MR2390329
  18. Y.-P. Lee, Invariance of tautological equations II: Gromov–Witten theory (with Appendix A by Y. Iwao and Y.-P. Lee), J. Amer. Math. Soc. 22 (2009), 331-352 Zbl1206.14078MR2476776
  19. J. van de Leur, Twisted GL n loop group orbit and solutions of the WDVV equations, J. Amer. Math. Soc. 2001, 551-573 Zbl0991.37042MR1836730
  20. A. Losev, On “Hodge” topological strings at genus zero, JETP Lett. 65 (1997), 386-392 
  21. A. Losev, Hodge strings and elements of K. Saito’s theory of primitive form, Topological field theory, primitive forms and related topics 160 (1999), 305-335, Birkhäuser, Boston Zbl1059.14016MR1653030
  22. A. Losev, Y. Manin, New moduli spaces of pointed curves and pencils of flat connections, Mich. Math. J. 48 (2000), Spec. Vol., 443-472 Zbl1078.14536MR1786500
  23. A. Losev, I. Polyubin, On compatibility of tensor products on solutions to commutativity and WDVV equations, JETP Lett. 73 (2001), 53-58 
  24. A. Losev, I. Polyubin, Commutativity equations and dressing transformations, JETP Lett. 77 (2003), 53-57 
  25. Yu. I. Manin, Frobenius manifolds, quantum cohomology, and moduli spaces, 47 (1999), American Mathematical Society, Providence, RI Zbl0952.14032MR1702284
  26. S. Shadrin, BCOV theory via Givental group action on cohomological field theories, Mosc. Math. J. 9 (2009), 411-429 Zbl1184.14070MR2568443
  27. E. Witten, On the structure of the topological phase of two-dimensional gravity, Nuclear Phys. B 340 (1990), 281-332 MR1068086

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.