The local integration of Leibniz algebras
Simon Covez[1]
- [1] Université du Luxembourg Campus Kirchberg Mathematics Research Unit 6, rue Richard Coudenhove-Kalergi L-1359Luxembourg Grand Duché du Luxembourg
Annales de l’institut Fourier (2013)
- Volume: 63, Issue: 1, page 1-35
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- Nicolás Andruskiewitsch, Matías Graña, From racks to pointed Hopf algebras, Adv. Math. 178 (2003), 177-243 Zbl1032.16028MR1994219
- E. Cartan, Le troisième théorème fondamental de Lie, C.R. Acad. Sc. T. 190 (1930), 914-1005 Zbl56.0373.01
- S. Covez, L’intégration locale des algèbres de Leibniz, (2010)
- W. T. van Est, A group theoretic interpretation of area in the elementary geometries., Simon Stevin 32 (1958), 29-38 Zbl0139.14406MR97764
- W. T. van Est, Local and global groups. I, Nederl. Akad. Wetensch. Proc. Ser. A 65 = Indag. Math. 24 (1962), 391-408 Zbl0105.02405MR144999
- W. T. van Est, Local and global groups. II, Nederl. Akad. Wetensch. Proc. Ser. A 65 = Indag. Math. 24 (1962), 409-425 Zbl0109.02003MR145000
- Roger Fenn, Colin Rourke, Racks and links in codimension two, J. Knot Theory Ramifications 1 (1992), 343-406 Zbl0787.57003MR1194995
- Nicholas Jackson, Extensions of racks and quandles, Homology Homotopy Appl. 7 (2005), 151-167 Zbl1077.18010MR2155522
- Michael K. Kinyon, Leibniz algebras, Lie racks, and digroups, J. Lie Theory 17 (2007), 99-114 Zbl1129.17002MR2286884
- J. L. Loday, T. Pirashvili, The tensor category of linear maps and Leibniz algebras, Georgian Math. J. 5 (1998), 263-276 Zbl0909.18003MR1618360
- Jean-Louis Loday, Une version non commutative des algèbres de Lie: les algèbres de Leibniz, R.C.P. 25, Vol. 44 (French) (Strasbourg, 1992) 1993/41 (1993), 127-151, Univ. Louis Pasteur, Strasbourg Zbl0806.55009MR1331623
- Jean-Louis Loday, Cyclic homology, 301 (1998), Springer-Verlag, Berlin Zbl0780.18009MR1600246
- Jean-Louis Loday, Teimuraz Pirashvili, Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann. 296 (1993), 139-158 Zbl0821.17022MR1213376
- Karl-Hermann Neeb, Central extensions of infinite-dimensional Lie groups, Ann. Inst. Fourier (Grenoble) 52 (2002), 1365-1442 Zbl1019.22012MR1935553
- Karl-Hermann Neeb, Abelian extensions of infinite-dimensional Lie groups, Travaux mathématiques. Fasc. XV (2004), 69-194, Univ. Luxemb., Luxembourg Zbl1079.22018MR2143422
- P. A. Smith, The complex of a group relative to a set of generators. II, Ann. of Math. (2) 54 (1951), 403-424 Zbl0044.19804MR48462
- P. A. Smith, Some topological notions connected with a set of generators, Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 2 (1952), 436-441, Amer. Math. Soc., Providence, R. I. Zbl0049.12503MR48463