Central extensions of infinite-dimensional Lie groups
- [1] Technische Universität Darmstadt, Fachbereich Mathematik AG5, Schlossgartenstrasse 7, 64289 Darmstadt (Allemagne)
Annales de l’institut Fourier (2002)
- Volume: 52, Issue: 5, page 1365-1442
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topNeeb, Karl-Hermann. "Central extensions of infinite-dimensional Lie groups." Annales de l’institut Fourier 52.5 (2002): 1365-1442. <http://eudml.org/doc/116014>.
@article{Neeb2002,
abstract = {The main result of the present paper is an exact sequence which describes the group of
central extensions of a connected infinite-dimensional Lie group $G$ by an abelian group
$Z$ whose identity component is a quotient of a vector space by a discrete subgroup. A
major point of this result is that it is not restricted to smoothly paracompact groups
and hence applies in particular to all Banach- and Fréchet-Lie groups. The exact sequence
encodes in particular precise obstructions for a given Lie algebra cocycle to correspond
to a locally group cocycle.},
affiliation = {Technische Universität Darmstadt, Fachbereich Mathematik AG5, Schlossgartenstrasse 7, 64289 Darmstadt (Allemagne)},
author = {Neeb, Karl-Hermann},
journal = {Annales de l’institut Fourier},
keywords = {infinite-dimensional Lie group; invariant form; central extension; period map; Lie group cocycle; homotopy group; local cocycle; diffeomorphism group},
language = {eng},
number = {5},
pages = {1365-1442},
publisher = {Association des Annales de l'Institut Fourier},
title = {Central extensions of infinite-dimensional Lie groups},
url = {http://eudml.org/doc/116014},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Neeb, Karl-Hermann
TI - Central extensions of infinite-dimensional Lie groups
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 5
SP - 1365
EP - 1442
AB - The main result of the present paper is an exact sequence which describes the group of
central extensions of a connected infinite-dimensional Lie group $G$ by an abelian group
$Z$ whose identity component is a quotient of a vector space by a discrete subgroup. A
major point of this result is that it is not restricted to smoothly paracompact groups
and hence applies in particular to all Banach- and Fréchet-Lie groups. The exact sequence
encodes in particular precise obstructions for a given Lie algebra cocycle to correspond
to a locally group cocycle.
LA - eng
KW - infinite-dimensional Lie group; invariant form; central extension; period map; Lie group cocycle; homotopy group; local cocycle; diffeomorphism group
UR - http://eudml.org/doc/116014
ER -
References
top- G. E. Bredon, Topology and Geometry, 139 (1993), Springer-Verlag, Berlin Zbl0791.55001MR1224675
- G. E. Bredon, Sheaf Theory, 170 (1997), Springer-Verlag, Berlin Zbl0874.55001MR1481706
- J.-L. Brylinski, Loop Spaces, Characteristic Classes and Geometric Quantization, 107 (1993), Birkhäuser Verlag Zbl0823.55002MR1197353
- E. Calabi, Sur les extensions des groupes topologiques, Brioschi Annali di Mat. Pura et Appl., Ser 4 32 (1951), 295-370 Zbl0054.01302MR49907
- E. Cartan, Le troisième théorème fondamental de Lie, 2 (1952), 1143-1148, Gauthier--Villars, Paris Zbl56.0373.01
- E. Cartan, La topologie des espaces représentifs de groupes de Lie, 2 (1952), 1307-1330, Gauthier--Villars, Paris
- E. Cartan, Les représentations linéaires des groupes de Lie, 2 (1952), 1339-1350, Gauthier--Villars, Paris Zbl0018.14701
- C. Chevalley, Theory of Lie Groups I, (1946), Princeton Univ. Press Zbl0063.00842MR82628
- T. Dieck, Topologie, (1991), de Gruyter, Berlin -- New York Zbl0731.55001MR1150244
- A. Douady, M. Lazard, Espaces fibrés en algèbres de Lie et en groupes, Invent. Math 1 (1966), 133-151 Zbl0144.01804MR197622
- S. Eilenberg, S. MacLane, Relations between homology and homotopy theory, Proc. Nat. Acad. Sci. U.S.A 29 (1943), 155-158 Zbl0061.40701MR7982
- S. Eilenberg, S. MacLane, Cohomology theory in abstract groups. II, Annals of Math 48 (1947), 326-341 Zbl0029.34101MR20996
- W. T. van Est, A group theoretic interpretation of area in the elementary geometries, Simon Stevin, Wis. en Natuurkundig Tijdschrift 32 (1954), 29-38 Zbl0139.14406MR97764
- W. T. van Est, Local and global groups, Indag. Math. 24 (1962), 391-425 Zbl0109.02003
- W. T. van Est, Une démonstration de E. Cartan du troisième théorème de Lie, Séminaire Sud-Rhodanien de Géométrie VIII: Actions Hamiltoniennes de Groupes; Troisième Théorème de Lie (1988), Hermann, Paris Zbl0652.17002
- W. T. van Est, Th. J. Korthagen, Non enlargible Lie algebras, Proc. Kon. Ned. Acad. v. Wet. A 67 (1964), 15-31 Zbl0121.27503MR160851
- W. T. van Est, M. A. M. van der Lee, Enlargeability of local groups according to Malcev and Cartan-Smith, (1988), Hermann, Paris Zbl0657.22007MR951173
- L. Fuchs, Infinite Abelian Groups, I, (1970), Acad. Press, New York Zbl0209.05503MR255673
- H. Glöckner, Infinite-dimensional Lie groups without completeness restriction, Geometry and Analysis on Finite- and Infinite-Dimensional Lie Groups 55 (2002), 43-59, Banach Center Publications Zbl1020.58009
- H. Glöckner, Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups Zbl1022.22021MR1934608
- H. Glöckner, Algebras whose groups of units are Lie groups, (2001) Zbl1009.22021MR1948922
- C. Godbillon, Eléments de Topologie Algébrique, (1971), Hermann, Paris Zbl0218.55001MR301725
- V. V. Gorbatsevich, The construction of a simply connected Lie group with a given Lie algebra, Russian Math. Surveys 41 (1986), 207-208 Zbl0613.22005MR854249
- R. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc 7 (1982), 65-222 Zbl0499.58003MR656198
- P. de la Harpe, Classical Banach Lie Algebras and Banach-Lie Groups of Operators in Hilbert Space, 285 (1972), Springer-Verlag, Berlin Zbl0256.22015MR476820
- A. Heller, Principal bundles and groups extensions with applications to Hopf algebras, J. Pure and Appl. Algebra 3 (1973), 219-250 Zbl0275.18012MR327871
- M. W. Hirsch, Differential Topology, 33 (1976), Springer-Verlag Zbl0356.57001MR448362
- G. Hochschild, Group extensions of Lie groups I, II, Annals of Math 54 ; 54 (1951 ; 1951), 96-109 ; 537-551 Zbl0045.30802MR41858
- K. H. Hofmann, S. A. Morris, The Structure of Compact Groups, (1998), de Gruyter, Berlin Zbl0919.22001MR1646190
- P. J. Huber, Homotopical Cohomology and Cech Cohomology, Math. Annalen 144 (1961), 73-76 Zbl0096.37504MR133821
- A. Kriegl, P. Michor, The Convenient Setting of Global Analysis, 53 (1997), Amer. Math. Soc. Zbl0889.58001MR1471480
- S. Lang, Fundamentals of Differential Geometry, 191 (1999), Springer-Verlag Zbl0932.53001MR1666820
- G. W. Mackey, Les ensembles boréliens et les extensions des groupes, J. Math 36 (1957), 171-178 Zbl0080.02303MR89998
- S. MacLane, Homological Algebra, (1963), Springer-Verlag
- P. Maier, Central extensions of topological current algebras, Geometry and Analysis on Finite- and Infinite-Dimensional Lie groups 55 (2002), 61-76, Banach Center Publications Zbl1045.17008
- P. Maier, K.-H. Neeb, Central extensions of current groups, (2001) Zbl1029.22025MR1990915
- E. Michael, Convex structures and continuous selections, Can. J. Math 11 (1959), 556-575 Zbl0093.36603MR109344
- P. Michor, J. Teichmann, Description of infinite dimensional abelian regular Lie groups, J. Lie Theory (1999), 487-489 Zbl1012.22036MR1718235
- J. Milnor, Remarks on infinite-dimensional Lie groups, Proc. Summer School on Quantum Gravity, Les Houches (1983) Zbl0594.22009
- K.-H. Neeb, A note on central extensions, J. Lie Theory (1996), 207-213 Zbl0868.22014MR1424633
- K.-H. Neeb, Holomorphic highest weight representations of infinite dimensional complex classical groups, J. reine angew. Math 497 (1998), 171-222 Zbl0894.22007MR1617431
- K.-H. Neeb, Representations of infinite dimensional groups, Infinite Dimensional Kähler Manifolds 31 (2001), Birkhäuser Zbl0980.22005
- K.-H. Neeb, Universal central extensions of Lie groups Zbl1019.22011MR1926500
- H. Omori, Infinite-Dimensional Lie Groups, 158 (1997), Amer. Math. Soc. Zbl0871.58007MR1421572
- R. S. Palais, On the homotopy type of certain groups of operators, Topology 3 (1965), 271-279 Zbl0161.34501MR175130
- R. S. Palais, Homotopy theory of infinite dimensional manifolds, Topology 5 (1965), 1-16 Zbl0138.18302MR189028
- A. Pressley, G. Segal, Loop Groups, (1986), Oxford University Press, Oxford Zbl0618.22011MR900587
- C. Roger, Extensions centrales d'algèbres et de groupes de Lie de dimension infinie, algèbres de Virasoro et généralisations, Reports on Math. Phys 35 (1995), 225-266 Zbl0892.17018MR1377323
- G. Segal, Cohomology of topological groups, Symposia Math 4 (1970), 377-387 Zbl0223.57034MR280572
- G. Segal, Unitary representations of some infinite-dimensional groups, Comm. Math. Phys 80 (1981), 301-342 Zbl0495.22017MR626704
- A. Shapiro, Group extensions of compact Lie groups, Annals of Math (1949), 581-586 Zbl0033.34704MR31487
- S. J. Sidney, Weakly dense subgroups of Banach spaces, Indiana Univ. Math. Journal (1977), 981-986 Zbl0344.46033MR458134
- E. H. Spanier, Algebraic Topology, (1966), McGraw-Hill Book Company, New York Zbl0145.43303MR210112
- J. D. Stasheff, Continuous cohomology of groups and classifying spaces, Bull. of the Amer. Math. Soc (1978), 513-530 Zbl0399.55009MR494071
- N. Steenrod, The topology of fibre bundles, (1951), Princeton University Press, Princeton, New Jersey Zbl0054.07103MR39258
- J. Teichmann, Infinite-dimensional Lie Theory from the Point of View of Functional Analysis, (1999)
- J. Tits, Liesche Gruppen und Algebren, (1983), Springer, New York-Heidelberg Zbl0506.22011MR716684
- V. Toledano Laredo, Integrating unitary representations of infinite-dimensional Lie groups, Journal of Funct. Anal. 161 (1999), 478-508 Zbl0919.22007MR1674631
- G. M. Tuynman, An elementary proof of Lie's Third Theorem, (1995)
- G. M. Tuynman, W. A. J. J. Wiegerinck, Central extensions and physics, J. Geom. Physics 4 (1987), 207-258 Zbl0649.58014MR948561
- V. S. Varadarajan, Geometry of Quantum Theory, (1985), Springer-Verlag Zbl0581.46061MR805158
- F. W. Warner, Foundations of Differentiable Manifolds and Lie Groups, (1983), Springer-Verlag, Berlin Zbl0516.58001MR722297
- R. O. Wells, Differential Analysis on Complex Manifolds, (1980), Springer-Verlag Zbl0435.32004MR608414
- C. A. Weibel, An introduction to homological algebra, 38 (1995), Cambridge Univ. Press Zbl0834.18001MR1269324
- D. Werner, Funktionalanalysis, (1995), Springer-Verlag, Berlin-Heidelberg Zbl0831.46002MR1787146
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.