Central extensions of infinite-dimensional Lie groups

Karl-Hermann Neeb[1]

  • [1] Technische Universität Darmstadt, Fachbereich Mathematik AG5, Schlossgartenstrasse 7, 64289 Darmstadt (Allemagne)

Annales de l’institut Fourier (2002)

  • Volume: 52, Issue: 5, page 1365-1442
  • ISSN: 0373-0956

Abstract

top
The main result of the present paper is an exact sequence which describes the group of central extensions of a connected infinite-dimensional Lie group G by an abelian group Z whose identity component is a quotient of a vector space by a discrete subgroup. A major point of this result is that it is not restricted to smoothly paracompact groups and hence applies in particular to all Banach- and Fréchet-Lie groups. The exact sequence encodes in particular precise obstructions for a given Lie algebra cocycle to correspond to a locally group cocycle.

How to cite

top

Neeb, Karl-Hermann. "Central extensions of infinite-dimensional Lie groups." Annales de l’institut Fourier 52.5 (2002): 1365-1442. <http://eudml.org/doc/116014>.

@article{Neeb2002,
abstract = {The main result of the present paper is an exact sequence which describes the group of central extensions of a connected infinite-dimensional Lie group $G$ by an abelian group $Z$ whose identity component is a quotient of a vector space by a discrete subgroup. A major point of this result is that it is not restricted to smoothly paracompact groups and hence applies in particular to all Banach- and Fréchet-Lie groups. The exact sequence encodes in particular precise obstructions for a given Lie algebra cocycle to correspond to a locally group cocycle.},
affiliation = {Technische Universität Darmstadt, Fachbereich Mathematik AG5, Schlossgartenstrasse 7, 64289 Darmstadt (Allemagne)},
author = {Neeb, Karl-Hermann},
journal = {Annales de l’institut Fourier},
keywords = {infinite-dimensional Lie group; invariant form; central extension; period map; Lie group cocycle; homotopy group; local cocycle; diffeomorphism group},
language = {eng},
number = {5},
pages = {1365-1442},
publisher = {Association des Annales de l'Institut Fourier},
title = {Central extensions of infinite-dimensional Lie groups},
url = {http://eudml.org/doc/116014},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Neeb, Karl-Hermann
TI - Central extensions of infinite-dimensional Lie groups
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 5
SP - 1365
EP - 1442
AB - The main result of the present paper is an exact sequence which describes the group of central extensions of a connected infinite-dimensional Lie group $G$ by an abelian group $Z$ whose identity component is a quotient of a vector space by a discrete subgroup. A major point of this result is that it is not restricted to smoothly paracompact groups and hence applies in particular to all Banach- and Fréchet-Lie groups. The exact sequence encodes in particular precise obstructions for a given Lie algebra cocycle to correspond to a locally group cocycle.
LA - eng
KW - infinite-dimensional Lie group; invariant form; central extension; period map; Lie group cocycle; homotopy group; local cocycle; diffeomorphism group
UR - http://eudml.org/doc/116014
ER -

References

top
  1. G. E. Bredon, Topology and Geometry, 139 (1993), Springer-Verlag, Berlin Zbl0791.55001MR1224675
  2. G. E. Bredon, Sheaf Theory, 170 (1997), Springer-Verlag, Berlin Zbl0874.55001MR1481706
  3. J.-L. Brylinski, Loop Spaces, Characteristic Classes and Geometric Quantization, 107 (1993), Birkhäuser Verlag Zbl0823.55002MR1197353
  4. E. Calabi, Sur les extensions des groupes topologiques, Brioschi Annali di Mat. Pura et Appl., Ser 4 32 (1951), 295-370 Zbl0054.01302MR49907
  5. E. Cartan, Le troisième théorème fondamental de Lie, 2 (1952), 1143-1148, Gauthier--Villars, Paris Zbl56.0373.01
  6. E. Cartan, La topologie des espaces représentifs de groupes de Lie, 2 (1952), 1307-1330, Gauthier--Villars, Paris 
  7. E. Cartan, Les représentations linéaires des groupes de Lie, 2 (1952), 1339-1350, Gauthier--Villars, Paris Zbl0018.14701
  8. C. Chevalley, Theory of Lie Groups I, (1946), Princeton Univ. Press Zbl0063.00842MR82628
  9. T. Dieck, Topologie, (1991), de Gruyter, Berlin -- New York Zbl0731.55001MR1150244
  10. A. Douady, M. Lazard, Espaces fibrés en algèbres de Lie et en groupes, Invent. Math 1 (1966), 133-151 Zbl0144.01804MR197622
  11. S. Eilenberg, S. MacLane, Relations between homology and homotopy theory, Proc. Nat. Acad. Sci. U.S.A 29 (1943), 155-158 Zbl0061.40701MR7982
  12. S. Eilenberg, S. MacLane, Cohomology theory in abstract groups. II, Annals of Math 48 (1947), 326-341 Zbl0029.34101MR20996
  13. W. T. van Est, A group theoretic interpretation of area in the elementary geometries, Simon Stevin, Wis. en Natuurkundig Tijdschrift 32 (1954), 29-38 Zbl0139.14406MR97764
  14. W. T. van Est, Local and global groups, Indag. Math. 24 (1962), 391-425 Zbl0109.02003
  15. W. T. van Est, Une démonstration de E. Cartan du troisième théorème de Lie, Séminaire Sud-Rhodanien de Géométrie VIII: Actions Hamiltoniennes de Groupes; Troisième Théorème de Lie (1988), Hermann, Paris Zbl0652.17002
  16. W. T. van Est, Th. J. Korthagen, Non enlargible Lie algebras, Proc. Kon. Ned. Acad. v. Wet. A 67 (1964), 15-31 Zbl0121.27503MR160851
  17. W. T. van Est, M. A. M. van der Lee, Enlargeability of local groups according to Malcev and Cartan-Smith, (1988), Hermann, Paris Zbl0657.22007MR951173
  18. L. Fuchs, Infinite Abelian Groups, I, (1970), Acad. Press, New York Zbl0209.05503MR255673
  19. H. Glöckner, Infinite-dimensional Lie groups without completeness restriction, Geometry and Analysis on Finite- and Infinite-Dimensional Lie Groups 55 (2002), 43-59, Banach Center Publications Zbl1020.58009
  20. H. Glöckner, Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups Zbl1022.22021MR1934608
  21. H. Glöckner, Algebras whose groups of units are Lie groups, (2001) Zbl1009.22021MR1948922
  22. C. Godbillon, Eléments de Topologie Algébrique, (1971), Hermann, Paris Zbl0218.55001MR301725
  23. V. V. Gorbatsevich, The construction of a simply connected Lie group with a given Lie algebra, Russian Math. Surveys 41 (1986), 207-208 Zbl0613.22005MR854249
  24. R. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc 7 (1982), 65-222 Zbl0499.58003MR656198
  25. P. de la Harpe, Classical Banach Lie Algebras and Banach-Lie Groups of Operators in Hilbert Space, 285 (1972), Springer-Verlag, Berlin Zbl0256.22015MR476820
  26. A. Heller, Principal bundles and groups extensions with applications to Hopf algebras, J. Pure and Appl. Algebra 3 (1973), 219-250 Zbl0275.18012MR327871
  27. M. W. Hirsch, Differential Topology, 33 (1976), Springer-Verlag Zbl0356.57001MR448362
  28. G. Hochschild, Group extensions of Lie groups I, II, Annals of Math 54 ; 54 (1951 ; 1951), 96-109 ; 537-551 Zbl0045.30802MR41858
  29. K. H. Hofmann, S. A. Morris, The Structure of Compact Groups, (1998), de Gruyter, Berlin Zbl0919.22001MR1646190
  30. P. J. Huber, Homotopical Cohomology and Cech Cohomology, Math. Annalen 144 (1961), 73-76 Zbl0096.37504MR133821
  31. A. Kriegl, P. Michor, The Convenient Setting of Global Analysis, 53 (1997), Amer. Math. Soc. Zbl0889.58001MR1471480
  32. S. Lang, Fundamentals of Differential Geometry, 191 (1999), Springer-Verlag Zbl0932.53001MR1666820
  33. G. W. Mackey, Les ensembles boréliens et les extensions des groupes, J. Math 36 (1957), 171-178 Zbl0080.02303MR89998
  34. S. MacLane, Homological Algebra, (1963), Springer-Verlag 
  35. P. Maier, Central extensions of topological current algebras, Geometry and Analysis on Finite- and Infinite-Dimensional Lie groups 55 (2002), 61-76, Banach Center Publications Zbl1045.17008
  36. P. Maier, K.-H. Neeb, Central extensions of current groups, (2001) Zbl1029.22025MR1990915
  37. E. Michael, Convex structures and continuous selections, Can. J. Math 11 (1959), 556-575 Zbl0093.36603MR109344
  38. P. Michor, J. Teichmann, Description of infinite dimensional abelian regular Lie groups, J. Lie Theory (1999), 487-489 Zbl1012.22036MR1718235
  39. J. Milnor, Remarks on infinite-dimensional Lie groups, Proc. Summer School on Quantum Gravity, Les Houches (1983) Zbl0594.22009
  40. K.-H. Neeb, A note on central extensions, J. Lie Theory (1996), 207-213 Zbl0868.22014MR1424633
  41. K.-H. Neeb, Holomorphic highest weight representations of infinite dimensional complex classical groups, J. reine angew. Math 497 (1998), 171-222 Zbl0894.22007MR1617431
  42. K.-H. Neeb, Representations of infinite dimensional groups, Infinite Dimensional Kähler Manifolds 31 (2001), Birkhäuser Zbl0980.22005
  43. K.-H. Neeb, Universal central extensions of Lie groups Zbl1019.22011MR1926500
  44. H. Omori, Infinite-Dimensional Lie Groups, 158 (1997), Amer. Math. Soc. Zbl0871.58007MR1421572
  45. R. S. Palais, On the homotopy type of certain groups of operators, Topology 3 (1965), 271-279 Zbl0161.34501MR175130
  46. R. S. Palais, Homotopy theory of infinite dimensional manifolds, Topology 5 (1965), 1-16 Zbl0138.18302MR189028
  47. A. Pressley, G. Segal, Loop Groups, (1986), Oxford University Press, Oxford Zbl0618.22011MR900587
  48. C. Roger, Extensions centrales d'algèbres et de groupes de Lie de dimension infinie, algèbres de Virasoro et généralisations, Reports on Math. Phys 35 (1995), 225-266 Zbl0892.17018MR1377323
  49. G. Segal, Cohomology of topological groups, Symposia Math 4 (1970), 377-387 Zbl0223.57034MR280572
  50. G. Segal, Unitary representations of some infinite-dimensional groups, Comm. Math. Phys 80 (1981), 301-342 Zbl0495.22017MR626704
  51. A. Shapiro, Group extensions of compact Lie groups, Annals of Math (1949), 581-586 Zbl0033.34704MR31487
  52. S. J. Sidney, Weakly dense subgroups of Banach spaces, Indiana Univ. Math. Journal (1977), 981-986 Zbl0344.46033MR458134
  53. E. H. Spanier, Algebraic Topology, (1966), McGraw-Hill Book Company, New York Zbl0145.43303MR210112
  54. J. D. Stasheff, Continuous cohomology of groups and classifying spaces, Bull. of the Amer. Math. Soc (1978), 513-530 Zbl0399.55009MR494071
  55. N. Steenrod, The topology of fibre bundles, (1951), Princeton University Press, Princeton, New Jersey Zbl0054.07103MR39258
  56. J. Teichmann, Infinite-dimensional Lie Theory from the Point of View of Functional Analysis, (1999) 
  57. J. Tits, Liesche Gruppen und Algebren, (1983), Springer, New York-Heidelberg Zbl0506.22011MR716684
  58. V. Toledano Laredo, Integrating unitary representations of infinite-dimensional Lie groups, Journal of Funct. Anal. 161 (1999), 478-508 Zbl0919.22007MR1674631
  59. G. M. Tuynman, An elementary proof of Lie's Third Theorem, (1995) 
  60. G. M. Tuynman, W. A. J. J. Wiegerinck, Central extensions and physics, J. Geom. Physics 4 (1987), 207-258 Zbl0649.58014MR948561
  61. V. S. Varadarajan, Geometry of Quantum Theory, (1985), Springer-Verlag Zbl0581.46061MR805158
  62. F. W. Warner, Foundations of Differentiable Manifolds and Lie Groups, (1983), Springer-Verlag, Berlin Zbl0516.58001MR722297
  63. R. O. Wells, Differential Analysis on Complex Manifolds, (1980), Springer-Verlag Zbl0435.32004MR608414
  64. C. A. Weibel, An introduction to homological algebra, 38 (1995), Cambridge Univ. Press Zbl0834.18001MR1269324
  65. D. Werner, Funktionalanalysis, (1995), Springer-Verlag, Berlin-Heidelberg Zbl0831.46002MR1787146

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.