On 1 -cocycles induced by a positive definite function on a locally compact abelian group

Jordan Franks[1]; Alain Valette[2]

  • [1] Mathematisches Institut Universität Bonn Endenicher Allee 60 53115 Bonn Germany
  • [2] Institut de Mathématiques Université de Neuchâtel Unimail, 11 Rue Emile Argand CH-2000 Neuchâtel Switzerland

Annales mathématiques Blaise Pascal (2014)

  • Volume: 21, Issue: 1, page 61-69
  • ISSN: 1259-1734

Abstract

top
For ϕ a normalized positive definite function on a locally compact abelian group G , let π ϕ be the unitary representation associated to ϕ by the GNS construction. We give necessary and sufficient conditions for the vanishing of 1-cohomology H 1 ( G , π ϕ ) and reduced 1-cohomology H ¯ 1 ( G , π ϕ ) . For example, H ¯ 1 ( G , π ϕ ) = 0 if and only if either Hom ( G , ) = 0 or μ ϕ ( 1 G ) = 0 , where 1 G is the trivial character of G and μ ϕ is the probability measure on the Pontryagin dual G ^ associated to ϕ by Bochner’s Theorem. This streamlines an argument of Guichardet (see Theorem 4 in [7]).

How to cite

top

Franks, Jordan, and Valette, Alain. "On $1$-cocycles induced by a positive definite function on a locally compact abelian group." Annales mathématiques Blaise Pascal 21.1 (2014): 61-69. <http://eudml.org/doc/275522>.

@article{Franks2014,
abstract = {For $\varphi $ a normalized positive definite function on a locally compact abelian group $G$, let $\pi _\varphi $ be the unitary representation associated to $\varphi $ by the GNS construction. We give necessary and sufficient conditions for the vanishing of 1-cohomology $H^1(G,\pi _\varphi )$ and reduced 1-cohomology $\overline\{H\}^1(G,\pi _\varphi )$. For example, $\overline\{H\}^1(G,\pi _\varphi )=0$ if and only if either $\text\{Hom\}(G,\mathbb\{C\})=0$ or $\mu _\varphi (1_G)=0$, where $1_G$ is the trivial character of $G$ and $\mu _\varphi $ is the probability measure on the Pontryagin dual $\hat\{G\}$ associated to $\varphi $ by Bochner’s Theorem. This streamlines an argument of Guichardet (see Theorem 4 in [7]).},
affiliation = {Mathematisches Institut Universität Bonn Endenicher Allee 60 53115 Bonn Germany; Institut de Mathématiques Université de Neuchâtel Unimail, 11 Rue Emile Argand CH-2000 Neuchâtel Switzerland},
author = {Franks, Jordan, Valette, Alain},
journal = {Annales mathématiques Blaise Pascal},
keywords = {continuous 1-cohomology; cyclic representation; GNS construction; locally compact abelian group; positive definite function; GNS-contruction},
language = {eng},
month = {1},
number = {1},
pages = {61-69},
publisher = {Annales mathématiques Blaise Pascal},
title = {On $1$-cocycles induced by a positive definite function on a locally compact abelian group},
url = {http://eudml.org/doc/275522},
volume = {21},
year = {2014},
}

TY - JOUR
AU - Franks, Jordan
AU - Valette, Alain
TI - On $1$-cocycles induced by a positive definite function on a locally compact abelian group
JO - Annales mathématiques Blaise Pascal
DA - 2014/1//
PB - Annales mathématiques Blaise Pascal
VL - 21
IS - 1
SP - 61
EP - 69
AB - For $\varphi $ a normalized positive definite function on a locally compact abelian group $G$, let $\pi _\varphi $ be the unitary representation associated to $\varphi $ by the GNS construction. We give necessary and sufficient conditions for the vanishing of 1-cohomology $H^1(G,\pi _\varphi )$ and reduced 1-cohomology $\overline{H}^1(G,\pi _\varphi )$. For example, $\overline{H}^1(G,\pi _\varphi )=0$ if and only if either $\text{Hom}(G,\mathbb{C})=0$ or $\mu _\varphi (1_G)=0$, where $1_G$ is the trivial character of $G$ and $\mu _\varphi $ is the probability measure on the Pontryagin dual $\hat{G}$ associated to $\varphi $ by Bochner’s Theorem. This streamlines an argument of Guichardet (see Theorem 4 in [7]).
LA - eng
KW - continuous 1-cohomology; cyclic representation; GNS construction; locally compact abelian group; positive definite function; GNS-contruction
UR - http://eudml.org/doc/275522
ER -

References

top
  1. Bachir Bekka, Pierre de la Harpe, Alain Valette, Kazhdan’s property (T), (2008), Cambridge University Press Zbl1146.22009MR2415834
  2. Bachir Bekka, Alain Valette, Group cohomology, harmonic functions and the first L 2 -Betti number, Potential Analysis 6 (1997), 313-326 Zbl0882.22013MR1452785
  3. Yves de Cornulier, Romain Tessera, Alain Valette, Isometric group actions on Banach space and representations vanishing at infinity, Transform. Groups 13 (2008), 125-147 Zbl1149.22006MR2421319
  4. Jacques Dixmier, Les C * -alg e ` bres et leurs repr e ´ sentations, (1969), Gauthier-Villars Zbl0174.18601
  5. Gerald Folland, A course in abstract harmonic analysis, (1995), CRC Press Zbl0857.43001MR1397028
  6. Alain Guichardet, Sur la cohomologie des groupes topologiques, Bull. Sc. Math 95 (1971), 161-176 Zbl0218.57030MR307265
  7. Alain Guichardet, Sur la cohomologie des groupes topologiques II, Bull. Sc. Math. 96 (1972), 305-332 Zbl0243.57024MR340464
  8. Alain Guichardet, Cohomologie des groupes topologiques et des alg e ` bres de Lie, (1980), CEDIC Zbl0464.22001MR644979
  9. Walter Rudin, Fourier analysis on groups, (1962), John Wiley and Sons Zbl0698.43001MR152834
  10. Yehuda Shalom, Rigidity of commensurators and irreducible lattices, Invent. Math. 141 (2000), 1-54 Zbl0978.22010MR1767270

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.