On -cocycles induced by a positive definite function on a locally compact abelian group
Jordan Franks[1]; Alain Valette[2]
- [1] Mathematisches Institut Universität Bonn Endenicher Allee 60 53115 Bonn Germany
- [2] Institut de Mathématiques Université de Neuchâtel Unimail, 11 Rue Emile Argand CH-2000 Neuchâtel Switzerland
Annales mathématiques Blaise Pascal (2014)
- Volume: 21, Issue: 1, page 61-69
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topFranks, Jordan, and Valette, Alain. "On $1$-cocycles induced by a positive definite function on a locally compact abelian group." Annales mathématiques Blaise Pascal 21.1 (2014): 61-69. <http://eudml.org/doc/275522>.
@article{Franks2014,
abstract = {For $\varphi $ a normalized positive definite function on a locally compact abelian group $G$, let $\pi _\varphi $ be the unitary representation associated to $\varphi $ by the GNS construction. We give necessary and sufficient conditions for the vanishing of 1-cohomology $H^1(G,\pi _\varphi )$ and reduced 1-cohomology $\overline\{H\}^1(G,\pi _\varphi )$. For example, $\overline\{H\}^1(G,\pi _\varphi )=0$ if and only if either $\text\{Hom\}(G,\mathbb\{C\})=0$ or $\mu _\varphi (1_G)=0$, where $1_G$ is the trivial character of $G$ and $\mu _\varphi $ is the probability measure on the Pontryagin dual $\hat\{G\}$ associated to $\varphi $ by Bochner’s Theorem. This streamlines an argument of Guichardet (see Theorem 4 in [7]).},
affiliation = {Mathematisches Institut Universität Bonn Endenicher Allee 60 53115 Bonn Germany; Institut de Mathématiques Université de Neuchâtel Unimail, 11 Rue Emile Argand CH-2000 Neuchâtel Switzerland},
author = {Franks, Jordan, Valette, Alain},
journal = {Annales mathématiques Blaise Pascal},
keywords = {continuous 1-cohomology; cyclic representation; GNS construction; locally compact abelian group; positive definite function; GNS-contruction},
language = {eng},
month = {1},
number = {1},
pages = {61-69},
publisher = {Annales mathématiques Blaise Pascal},
title = {On $1$-cocycles induced by a positive definite function on a locally compact abelian group},
url = {http://eudml.org/doc/275522},
volume = {21},
year = {2014},
}
TY - JOUR
AU - Franks, Jordan
AU - Valette, Alain
TI - On $1$-cocycles induced by a positive definite function on a locally compact abelian group
JO - Annales mathématiques Blaise Pascal
DA - 2014/1//
PB - Annales mathématiques Blaise Pascal
VL - 21
IS - 1
SP - 61
EP - 69
AB - For $\varphi $ a normalized positive definite function on a locally compact abelian group $G$, let $\pi _\varphi $ be the unitary representation associated to $\varphi $ by the GNS construction. We give necessary and sufficient conditions for the vanishing of 1-cohomology $H^1(G,\pi _\varphi )$ and reduced 1-cohomology $\overline{H}^1(G,\pi _\varphi )$. For example, $\overline{H}^1(G,\pi _\varphi )=0$ if and only if either $\text{Hom}(G,\mathbb{C})=0$ or $\mu _\varphi (1_G)=0$, where $1_G$ is the trivial character of $G$ and $\mu _\varphi $ is the probability measure on the Pontryagin dual $\hat{G}$ associated to $\varphi $ by Bochner’s Theorem. This streamlines an argument of Guichardet (see Theorem 4 in [7]).
LA - eng
KW - continuous 1-cohomology; cyclic representation; GNS construction; locally compact abelian group; positive definite function; GNS-contruction
UR - http://eudml.org/doc/275522
ER -
References
top- Bachir Bekka, Pierre de la Harpe, Alain Valette, Kazhdan’s property (T), (2008), Cambridge University Press Zbl1146.22009MR2415834
- Bachir Bekka, Alain Valette, Group cohomology, harmonic functions and the first -Betti number, Potential Analysis 6 (1997), 313-326 Zbl0882.22013MR1452785
- Yves de Cornulier, Romain Tessera, Alain Valette, Isometric group actions on Banach space and representations vanishing at infinity, Transform. Groups 13 (2008), 125-147 Zbl1149.22006MR2421319
- Jacques Dixmier, Les -algbres et leurs reprsentations, (1969), Gauthier-Villars Zbl0174.18601
- Gerald Folland, A course in abstract harmonic analysis, (1995), CRC Press Zbl0857.43001MR1397028
- Alain Guichardet, Sur la cohomologie des groupes topologiques, Bull. Sc. Math 95 (1971), 161-176 Zbl0218.57030MR307265
- Alain Guichardet, Sur la cohomologie des groupes topologiques II, Bull. Sc. Math. 96 (1972), 305-332 Zbl0243.57024MR340464
- Alain Guichardet, Cohomologie des groupes topologiques et des algbres de Lie, (1980), CEDIC Zbl0464.22001MR644979
- Walter Rudin, Fourier analysis on groups, (1962), John Wiley and Sons Zbl0698.43001MR152834
- Yehuda Shalom, Rigidity of commensurators and irreducible lattices, Invent. Math. 141 (2000), 1-54 Zbl0978.22010MR1767270
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.