Norm inequalities in some subspaces of Morrey space
Justin Feuto[1]
- [1] Laboratoire de Mathématiques Fondamentales UFR Mathématiques et Informatique Université Félix Houphouët-Boigny Abidjan, Cocody 22 B.P 1194 Abidjan 22 Côte d’Ivoire
Annales mathématiques Blaise Pascal (2014)
- Volume: 21, Issue: 2, page 21-37
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topFeuto, Justin. "Norm inequalities in some subspaces of Morrey space." Annales mathématiques Blaise Pascal 21.2 (2014): 21-37. <http://eudml.org/doc/275537>.
@article{Feuto2014,
abstract = {We give norm inequalities for some classical operators in amalgam spaces and in some subspaces of Morrey space.},
affiliation = {Laboratoire de Mathématiques Fondamentales UFR Mathématiques et Informatique Université Félix Houphouët-Boigny Abidjan, Cocody 22 B.P 1194 Abidjan 22 Côte d’Ivoire},
author = {Feuto, Justin},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Amalgams spaces; fractional maximal operator; Riesz potential; Hilbert transform; amalgam spaces; Morrey spaces},
language = {eng},
month = {7},
number = {2},
pages = {21-37},
publisher = {Annales mathématiques Blaise Pascal},
title = {Norm inequalities in some subspaces of Morrey space},
url = {http://eudml.org/doc/275537},
volume = {21},
year = {2014},
}
TY - JOUR
AU - Feuto, Justin
TI - Norm inequalities in some subspaces of Morrey space
JO - Annales mathématiques Blaise Pascal
DA - 2014/7//
PB - Annales mathématiques Blaise Pascal
VL - 21
IS - 2
SP - 21
EP - 37
AB - We give norm inequalities for some classical operators in amalgam spaces and in some subspaces of Morrey space.
LA - eng
KW - Amalgams spaces; fractional maximal operator; Riesz potential; Hilbert transform; amalgam spaces; Morrey spaces
UR - http://eudml.org/doc/275537
ER -
References
top- D.R. Adams, A note on Riesz potentials, Duke Math. J. 42 (1975), 765-778. Zbl0336.46038MR458158
- D.R. Adams, J Xiao, Nonlinear potential analysis on Morrey spaces and their capacities, Indiana University Mathematics Journal 53 (2004), 1629-1663. Zbl1100.31009MR2106339
- R. C. Busby, H. A. Smith, Product-convolution operators and mixed-norm spaces, Trans. AMS 263 (1981), 309-341. Zbl0465.43003MR594411
- F. Chiarenza, M. Frasca, Morrey spaces and Hardy-Littlewood maximal function, Rend. Math. 7 (1987), 273-279. Zbl0717.42023MR985999
- M. Cowling, S. Meda, R. Pasquale, Riesz potentials and amalgams, Ann. Inst. Fourier, Grenoble 49 (1999), 1345-1367 Zbl0938.47027MR1703091
- T. Dobler, Wiener amalgam spaces on locally compact groups, (1989)
- M. Dosso, I. Fofana, M. Sanogo, On some subspaces of Morrey-Sobolev spaces and boundedness of Riesz integrals, Ann. Pol. Math. 108 (2013), 133-153 Zbl1275.42034MR3034393
- D. Fan, S. LU, D. Yang, Regularity in Morrey spaces of strong solutions to nondivergence elliptic equations with VMO coefficients, Georgian Math. J. 5 (1998), 425-440. Zbl0917.35017MR1643604
- H. G. Feichtinger, A characterization of Wiener’s algebra on locally compact groups, Arch. Math. (Basel) 29 (1977), 136-140 Zbl0363.43003MR467170
- H. G. Feichtinger, Banach convolution algebras of Wiener’s type, Functions, Series, Operators, Proc. Conf. Budapest, 38, Colloq. Math. Soc. János Bolyai (1980), 509-524 Zbl0528.43001MR751019
- J. Feuto, I. Fofana, K. Koua, Espaces de fonctions á moyenne fractionnaire intgrables sur les groupes localement compacts, Afr. Mat. 15 (2003), 73-91 Zbl1047.43004MR2031873
- J. Feuto, I. Fofana, K. Koua, Integrable fractional mean functions on spaces of homogeneous type, Afr. Diaspora J. Math. 9 (2010), 8-30 Zbl1239.43002MR2516238
- I. Fofana, Étude d’une classe d’espaces de fonctions contenant les espaces de Lorentz, Afr. Mat. 1 (1988), 29-50 Zbl1210.46022MR1080380
- J. J. F. Fournier, J. Stewart, Amalgams of and , Bull. Amer. Math. Soc 13 (1985), 1-21 Zbl0593.43005MR788385
- J. Garciá-Cuerva, J.L. Rubio de Francia, Weighted norm inequalities and related topics, 116 (1985), North-Holland Math. Stud. Zbl0578.46046MR807149
- A. Gogatishvili, R. Mustafayev, Equivalence of norms of Riesz potential and fractional maximal function in Morrey-type spaces, Preprint, Institute of Mathematics, AS CR, Prague. (2008), 7-14 Zbl1258.42017MR2887108
- L. Grafakos, Modern Fourier analysis, 250 (2009), Springer, New York, second edition Zbl1158.42001MR2463316
- F. Holland, Harmonic analysis on amalgams of and , J. London Math. Soc. 10 (1975), 295-305 Zbl0314.46029MR374817
- B. Muckenhoupt, R. Wheeden, Weighted Norm Inequalities for Fractional Integrals, Trans. of the AMS 192 (1974), 261-274 Zbl0289.26010MR340523
- W. P. Ziemer, Weakly differentiable functions, (1989), Springer-Verlag Zbl0692.46022MR1014685
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.