Riesz potentials and amalgams

Michael Cowling; Stefano Meda; Roberta Pasquale

Annales de l'institut Fourier (1999)

  • Volume: 49, Issue: 4, page 1345-1367
  • ISSN: 0373-0956

Abstract

top
Let ( M , d ) be a metric space, equipped with a Borel measure μ satisfying suitable compatibility conditions. An amalgam A p q ( M ) is a space which looks locally like L p ( M ) but globally like L q ( M ) . We consider the case where the measure μ ( B ( x , ρ ) of the ball B ( x , ρ ) with centre x and radius ρ behaves like a polynomial in ρ , and consider the mapping properties between amalgams of kernel operators where the kernel ker K ( x , y ) behaves like d ( x , y ) - a when d ( x , y ) 1 and like d ( x , y ) - b when d ( x , y ) 1 . As an application, we describe Hardy–Littlewood–Sobolev type regularity theorems for Laplace–Beltrami operators on Riemannian manifolds and for certain subelliptic operators on Lie groups of polynomial growth.

How to cite

top

Cowling, Michael, Meda, Stefano, and Pasquale, Roberta. "Riesz potentials and amalgams." Annales de l'institut Fourier 49.4 (1999): 1345-1367. <http://eudml.org/doc/75384>.

@article{Cowling1999,
abstract = {Let $(M,d)$ be a metric space, equipped with a Borel measure $\mu $ satisfying suitable compatibility conditions. An amalgam $A^q_p (M) $ is a space which looks locally like $L^p(M)$ but globally like $L^q (M)$. We consider the case where the measure $\mu (B(x,\rho )$ of the ball $B(x,\rho )$ with centre $x$ and radius $\rho $ behaves like a polynomial in $\rho $, and consider the mapping properties between amalgams of kernel operators where the kernel $\ker \,K (x,y)$ behaves like $d(x,y)^\{-a\}$ when $d(x,y) \le 1$ and like $d(x,y)^\{-b\}$ when $d(x,y) \ge 1$. As an application, we describe Hardy–Littlewood–Sobolev type regularity theorems for Laplace–Beltrami operators on Riemannian manifolds and for certain subelliptic operators on Lie groups of polynomial growth.},
author = {Cowling, Michael, Meda, Stefano, Pasquale, Roberta},
journal = {Annales de l'institut Fourier},
keywords = {amalgam; heat equation; Gaussian semigroup; polynomial growth; Riesz potentials; infinite cylinder; Laplace-Beltrami operator; Hardy-Littlewood-Sobolev regularity theorem},
language = {eng},
number = {4},
pages = {1345-1367},
publisher = {Association des Annales de l'Institut Fourier},
title = {Riesz potentials and amalgams},
url = {http://eudml.org/doc/75384},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Cowling, Michael
AU - Meda, Stefano
AU - Pasquale, Roberta
TI - Riesz potentials and amalgams
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 4
SP - 1345
EP - 1367
AB - Let $(M,d)$ be a metric space, equipped with a Borel measure $\mu $ satisfying suitable compatibility conditions. An amalgam $A^q_p (M) $ is a space which looks locally like $L^p(M)$ but globally like $L^q (M)$. We consider the case where the measure $\mu (B(x,\rho )$ of the ball $B(x,\rho )$ with centre $x$ and radius $\rho $ behaves like a polynomial in $\rho $, and consider the mapping properties between amalgams of kernel operators where the kernel $\ker \,K (x,y)$ behaves like $d(x,y)^{-a}$ when $d(x,y) \le 1$ and like $d(x,y)^{-b}$ when $d(x,y) \ge 1$. As an application, we describe Hardy–Littlewood–Sobolev type regularity theorems for Laplace–Beltrami operators on Riemannian manifolds and for certain subelliptic operators on Lie groups of polynomial growth.
LA - eng
KW - amalgam; heat equation; Gaussian semigroup; polynomial growth; Riesz potentials; infinite cylinder; Laplace-Beltrami operator; Hardy-Littlewood-Sobolev regularity theorem
UR - http://eudml.org/doc/75384
ER -

References

top
  1. [1] J.-P. BERTRANDIAS, C. DATRY and C. DUPUIS, Unions et intersections d'espaces Lp invariantes par translation ou convolution, Ann. Inst. Fourier, Grenoble, 28-2 (1978), 53-84. Zbl0365.46029MR81g:43005
  2. [2] R.L. BISHOP and R.J. CRITTENDEN, Geometry of Manifolds, Academic Press, New York, 1964. Zbl0132.16003
  3. [3] C. CARATHÉODORY, Untersuchungen über dire Grundlagen der Thermodynamik, Math. Ann., 67 (1909), 355-386. 
  4. [4] J. CHEEGER, M. GROMOV and M. TAYLOR, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom., 17 (1982), 15-53. Zbl0493.53035MR84b:58109
  5. [5] W.L. CHOW, Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung, Math. Ann., 117 (1940), 98-115. Zbl0022.02304MR1,313dJFM65.0398.01
  6. [6] T. COULHON, Dimension à l'infini d'un semi-groupe analytique, Bull. Sci. Math., 114 (1990), 485-500. Zbl0738.47032MR91k:47091
  7. [7] T. COULHON, Noyau de la chaleur et discrétisation d'une variété riemannienne, Israel J. Math., 80 (1992), 289-300. Zbl0772.58055MR93k:58213
  8. [8] T. COULHON, L. SALOFF-COSTE, Variétés riemanniennes isométriques à l'infini, Rev. Mat. Iberoamericana, 11 (1995), 687-726. Zbl0845.58054MR96m:53035
  9. [9] T. COULHON, L. SALOFF-COSTE, Semi-groupes d'opérateurs et espaces fonctionnels sur les groupes de Lie, J. Approx. Theory, 65 (1991), 176-199. Zbl0745.47030MR92c:47049
  10. [10] C.B. CROKE, Some isoperimetric inequalities and eigenvalue estimates, Ann. Sci. Ecole Norm. Sup., 13 (1980), 419-435. Zbl0465.53032MR83d:58068
  11. [11] E.B. DAVIES, Heat Kernels and Spectral Theory, Cambridge Tract in Math. 92, Cambridge University Press, Cambridge, 1989. Zbl0699.35006MR90e:35123
  12. [12] E.B. DAVIES, Gaussian upper bounds for the heat kernels of some second order operators on Riemannian manifolds, J. Funct. Anal., 80 (1988), 16-32. Zbl0759.58045MR90k:58213
  13. [13] E.B. DAVIES and M.M.H. PANG, Sharp heat bounds for some Laplace operators, Quart. J. Math. Oxford, 40 (1989), 281-290. Zbl0701.35004MR91i:58142
  14. [14] G.B. FOLLAND and E.M. STEIN, Estimates for the ∂b-complex and analysis on the Heisenberg group, Comm. Pure Appl. Math., 27 (1974), 429-522. Zbl0293.35012MR51 #3719
  15. [15] J.J.F. FOURNIER and J. STEWART, Amalgams of Lp and lq, Bull. Amer. Math. Soc. (N.S.), 13 (1985), 1-21. Zbl0593.43005MR86f:46027
  16. [16] F. HOLLAND, Harmonic analysis on amalgams of Lp and lq, J. London Math. Soc., 10 (1975), 295-305. Zbl0314.46029MR51 #11013
  17. [17] L. HÖRMANDER, Hypoelliptic second-order differential equations, Acta Math., 119 (1967), 147-171. Zbl0156.10701MR36 #5526
  18. [18] M. KANAI, Rough isometries, and combinatorial approximation of non-compact Riemannian manifolds, J. Math. Soc. Japan, 37 (1985), 391-413. Zbl0554.53030MR87d:53082
  19. [19] P. LI and S.T. YAU, On the parabolic kernel of the Schrödinger operator, Acta Math., 156 (1986), 153-201. Zbl0611.58045MR87f:58156
  20. [20] A. NAGEL, E.M. STEIN and S. WAINGER, Balls and metrics defined by vector fields. I: Basic properties, Acta Math., 155 (1985), 103-147. Zbl0578.32044MR86k:46049
  21. [21] D.W. ROBINSON, Elliptic Operators and Lie Groups, Oxford Mathematical Monographs, Oxford University Press, Oxford, 1991. Zbl0747.47030
  22. [22] L. SALOFF-COSTE, Uniformly elliptic operators on Riemannian manifolds, J. Differential Geom., 36 (1992), 417-450. Zbl0735.58032MR93m:58122
  23. [23] N.Th. VAROPOULOS, Analysis on Lie groups, J. Funct. Anal., 76 (1988), 346-410. Zbl0634.22008MR89i:22018
  24. [24] N.Th. VAROPULOS, L. SALOFF-COSTE and T. COULHON, Analysis and Geometry on Groups, Cambridge Tract in Math. 100, Cambridge University Press, Cambridge, 1992. Zbl0813.22003
  25. [25] S.-T. YAU, Some function theoretic properties of complete Riemannian manifolds and their applications to geometry, Indiana Univ. Math. J., 25 (1976), 659-670. Zbl0335.53041MR54 #5502

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.