Resolvent estimates with mild trapping

Jared Wunsch

Journées Équations aux dérivées partielles (2012)

  • page 1-15
  • ISSN: 0752-0360

Abstract

top
We discuss recent progress in understanding the effects of certain trapping geometries on cut-off resolvent estimates, and thus on the qualititative behavior of linear evolution equations. We focus on trapping that is unstable, so that strong resolvent estimates hold on the real axis, and large resonance-free regions can be shown to exist beyond it.

How to cite

top

Wunsch, Jared. "Resolvent estimates with mild trapping." Journées Équations aux dérivées partielles (2012): 1-15. <http://eudml.org/doc/275539>.

@article{Wunsch2012,
abstract = {We discuss recent progress in understanding the effects of certain trapping geometries on cut-off resolvent estimates, and thus on the qualititative behavior of linear evolution equations. We focus on trapping that is unstable, so that strong resolvent estimates hold on the real axis, and large resonance-free regions can be shown to exist beyond it.},
author = {Wunsch, Jared},
journal = {Journées Équations aux dérivées partielles},
language = {eng},
pages = {1-15},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Resolvent estimates with mild trapping},
url = {http://eudml.org/doc/275539},
year = {2012},
}

TY - JOUR
AU - Wunsch, Jared
TI - Resolvent estimates with mild trapping
JO - Journées Équations aux dérivées partielles
PY - 2012
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 15
AB - We discuss recent progress in understanding the effects of certain trapping geometries on cut-off resolvent estimates, and thus on the qualititative behavior of linear evolution equations. We focus on trapping that is unstable, so that strong resolvent estimates hold on the real axis, and large resonance-free regions can be shown to exist beyond it.
LA - eng
UR - http://eudml.org/doc/275539
ER -

References

top
  1. Lars Andersson and Pieter Blue. Hidden symmetries and decay for the wave equation on the Kerr spacetime, 2009. Zbl06514748
  2. Claude Bardos, Gilles Lebeau, and Jeffrey Rauch. Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim., 30(5):1024–1065, 1992. Zbl0786.93009MR1178650
  3. D. Baskin and J. Wunsch. Resolvent estimates and local decay of waves on conic manifolds. In preparation. Zbl1296.53075
  4. Jean-François Bony, Nicolas Burq, and Thierry Ramond. Minoration de la résolvante dans le cas captif. C. R. Math. Acad. Sci. Paris, 348(23-24):1279–1282, 2010. Zbl1206.35182MR2745339
  5. N. Burq. Smoothing effect for Schrödinger boundary value problems. Duke Math. J., 123(2):403–427, 2004. Zbl1061.35024MR2066943
  6. N. Burq and H. Christianson. Imperfect geometric control and overdamping for the damped wave equation. In preparation. Zbl1320.35062
  7. Nicolas Burq. Pôles de diffusion engendrés par un coin. Astérisque, (242):ii+122, 1997. Zbl0896.35099MR1600338
  8. Nicolas Burq. Décroissance de l’énergie locale de l’équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel. Acta Math., 180(1):1–29, 1998. Zbl0918.35081MR1618254
  9. H. Christianson, E. Schenck, A. Vasy, and J. Wunsch. From resolvent estimates to damped waves. Preprint, 2012. 
  10. H. Christianson and J. Wunsch. Local smoothing for the Schrödinger equation with a prescribed loss. Amer. J. Math., to appear. Zbl1264.58012
  11. Hans Christianson. Cutoff resolvent estimates and the semilinear Schrödinger equation. Proc. Amer. Math. Soc., 136(10):3513–3520, 2008. Zbl1156.35085MR2415035
  12. Hans Christianson. Dispersive estimates for manifolds with one trapped orbit. Comm. Partial Differential Equations, 33(7-9):1147–1174, 2008. Zbl1152.58024MR2450154
  13. Peter Constantin and Jean-Claude Saut. Effets régularisants locaux pour des équations dispersives générales. C. R. Acad. Sci. Paris Sér. I Math., 304(14):407–410, 1987. Zbl0634.35064MR888234
  14. Mihalis Dafermos and Igor Rodnianski. Decay for solutions of the wave equation on kerr exterior spacetimes i-ii: The cases | a | m or axisymmetry, 2010. Zbl1211.83019
  15. K. Datchev and A. Vasy. Semiclassical resolvent estimates at trapped sets. Preprint, 2012. Zbl1271.58015MR3060761
  16. K. Datchev and A. Vasy. Gluing semiclassical resolvent estimates via propagation of singularities. IMRN, to appear, Preprint, 2011. Zbl1262.58019MR2999147
  17. Kiril Datchev. Local smoothing for scattering manifolds with hyperbolic trapped sets. Comm. Math. Phys., 286(3):837–850, 2009. Zbl1189.58016MR2472019
  18. Shin-ichi Doi. Smoothing effects of Schrödinger evolution groups on Riemannian manifolds. Duke Math. J., 82(3):679–706, 1996. Zbl0870.58101MR1387689
  19. Roland Donninger, Wilhelm Schlag, and Avy Soffer. On pointwise decay of linear waves on a Schwarzschild black hole background. Comm. Math. Phys., 309(1):51–86, 2012. Zbl1242.83054MR2864787
  20. Semyon Dyatlov. Exponential energy decay for Kerr–de Sitter black holes beyond event horizons. Math. Res. Lett., 18(5):1023–1035, 2011. Zbl1253.83020MR2875874
  21. Semyon Dyatlov. Quasi-normal modes and exponential energy decay for the Kerr-de Sitter black hole. Comm. Math. Phys., 306(1):119–163, 2011. Zbl1223.83029MR2819421
  22. Neil Fenichel. Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J., 21:193–226, 1971/1972. Zbl0246.58015MR287106
  23. F. Finster, N. Kamran, J. Smoller, and S.-T. Yau. Decay of solutions of the wave equation in the Kerr geometry. Comm. Math. Phys., 264(2):465–503, 2006. Zbl1194.83015MR2215614
  24. F. Finster, N. Kamran, J. Smoller, and S.-T. Yau. Erratum: “Decay of solutions of the wave equation in the Kerr geometry” [Comm. Math. Phys. 264 (2006), no. 2, 465–503;]. Comm. Math. Phys., 280(2):563–573, 2008. Zbl1194.83015MR2215614
  25. C. Gérard and J. Sjöstrand. Resonances en limite semiclassique et exposants de Lyapunov. Comm. Math. Phys., 116(2):193–213, 1988. Zbl0698.35118MR939046
  26. M. W. Hirsch, C. C. Pugh, and M. Shub. Invariant manifolds. Springer-Verlag, Berlin, 1977. Lecture Notes in Mathematics, Vol. 583. Zbl0355.58009MR501173
  27. L. Hörmander. On the existence and the regularity of solutions of linear pseudo-differential equations. Enseignement Math. (2), 17:99–163, 1971. Zbl0224.35084MR331124
  28. Tosio Kato and Kenji Yajima. Some examples of smooth operators and the associated smoothing effect. Rev. Math. Phys., 1(4):481–496, 1989. Zbl0833.47005MR1061120
  29. P.D. Lax and R.S. Phillips. Scattering Theory. Academic Press, New York, 1967. Revised edition, 1989. Zbl0697.35004MR1037774
  30. G. Lebeau. Équation des ondes amorties. In Algebraic and geometric methods in mathematical physics (Kaciveli, 1993), pages 73–109. Kluwer Acad. Publ., Dordrecht, 1996. Zbl0863.58068MR1385677
  31. Richard Melrose and Jared Wunsch. Propagation of singularities for the wave equation on conic manifolds. Invent. Math., 156(2):235–299, 2004. Zbl1088.58011MR2052609
  32. Stéphane Nonnenmacher and Maciej Zworski. Quantum decay rates in chaotic scattering. Acta Math., 203(2):149–233, 2009. Zbl1226.35061MR2570070
  33. Stéphane Nonnenmacher and Maciej Zworski. Semiclassical resolvent estimates in chaotic scattering. Appl. Math. Res. Express. AMRX, (1):74–86, 2009. Zbl1181.81055MR2581379
  34. James V. Ralston. Solutions of the wave equation with localized energy. Comm. Pure Appl. Math., 22:807–823, 1969. Zbl0209.40402MR254433
  35. Jeffrey Rauch and Michael Taylor. Decaying states of perturbed wave equations. J. Math. Anal. Appl., 54(1):279–285, 1976. Zbl0324.35073MR435606
  36. T. Regge. Analytic properties of the scattering matrix. Nuovo Cimento (10), 8:671–679, 1958. Zbl0080.41903MR95702
  37. Per Sjölin. Regularity of solutions to the Schrödinger equation. Duke Math. J., 55(3):699–715, 1987. Zbl0631.42010MR904948
  38. J. Sjöstrand and M. Zworski. Complex scaling and the distribution of scattering poles. J. Amer. Math. Soc., 4:729–769, 1991. Zbl0752.35046MR1115789
  39. P. Stefanov and G. Vodev. Distribution of resonances for the Neumann problem in linear elasticity outside a strictly convex body. Duke Math. J., 78(3):677–714, 1995. Zbl0846.35139MR1334206
  40. P. Stefanov and G. Vodev. Neumann resonances in linear elasticity for an arbitrary body. Comm. Math. Phys., 176(3):645–659, 1996. Zbl0851.35032MR1376435
  41. Plamen Stefanov. Quasimodes and resonances: sharp lower bounds. Duke Math. J., 99(1):75–92, 1999. Zbl0952.47013MR1700740
  42. Siu-Hung Tang and Maciej Zworski. From quasimodes to resonances. Math. Res. Lett., 5(3):261–272, 1998. Zbl0913.35101MR1637824
  43. Siu-Hung Tang and Maciej Zworski. Resonance expansions of scattered waves. Comm. Pure Appl. Math., 53(10):1305–1334, 2000. Zbl1032.35148MR1768812
  44. Daniel Tataru. Local decay of waves on asymptotically flat stationary space-times. arXiv:0910.5290. Zbl1266.83033MR3038715
  45. Daniel Tataru and Mihai Tohaneanu. A local energy estimate on Kerr black hole backgrounds. Int. Math. Res. Not. IMRN, (2):248–292, 2011. Zbl1209.83028MR2764864
  46. B. R. Vaĭnberg. Exterior elliptic problems that depend polynomially on the spectral parameter, and the asymptotic behavior for large values of the time of the solutions of nonstationary problems. Mat. Sb. (N.S.), 92(134):224–241, 343, 1973. Zbl0294.35031MR346319
  47. B. R. Vaĭnberg. Asymptotic methods in equations of mathematical physics. Gordon & Breach Science Publishers, New York, 1989. Translated from the Russian by E. Primrose. Zbl0743.35001MR1054376
  48. A. Vasy. Microlocal analysis of asymptotically hyperbolic and kerr-de sitter spaces. Preprint, 2010. Zbl1315.35015
  49. Luis Vega. Schrödinger equations: pointwise convergence to the initial data. Proc. Amer. Math. Soc., 102(4):874–878, 1988. Zbl0654.42014MR934859
  50. Jared Wunsch and Maciej Zworski. Resolvent estimates for normally hyperbolic trapped sets. Ann. Henri Poincaré, 12(7):1349–1385, 2011. Zbl1228.81170MR2846671
  51. Kenji Yajima. On smoothing property of Schrödinger propagators. In Functional-analytic methods for partial differential equations (Tokyo, 1989), volume 1450 of Lecture Notes in Math., pages 20–35. Springer, Berlin, 1990. Zbl0725.35084MR1084599
  52. M. Zworski. Personal communication. 
  53. M. Zworski. Distribution of poles for scattering on the real line. J. Funct. Anal., 73:277–296, 1987. Zbl0662.34033MR899652
  54. Maciej Zworski. Resonances in physics and geometry. Notices Amer. Math. Soc., 46(3):319–328, 1999. Zbl1177.58021MR1668841

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.