The tame automorphism group of an affine quadric threefold acting on a square complex
Cinzia Bisi[1]; Jean-Philippe Furter[2]; Stéphane Lamy[3]
- [1] Dipartimento Matematica ed Informatica, Universitá di Ferrara Via Machiavelli n.35, 44121 Ferrara, Italy
- [2] Laboratoire MIA, Université de La Rochelle Avenue Michel Crépeau, 17000 La Rochelle, France
- [3] Institut de Mathématiques de Toulouse, Université Paul Sabatier 118 route de Narbonne, 31062 Toulouse Cedex 9, France
Journal de l’École polytechnique — Mathématiques (2014)
- Volume: 1, page 161-223
- ISSN: 2270-518X
Access Full Article
topAbstract
topHow to cite
topBisi, Cinzia, Furter, Jean-Philippe, and Lamy, Stéphane. "The tame automorphism group of an affine quadric threefold acting on a square complex." Journal de l’École polytechnique — Mathématiques 1 (2014): 161-223. <http://eudml.org/doc/275564>.
@article{Bisi2014,
abstract = {We study the group $\mathrm\{Tame\}(\mathrm\{SL\}_2)$ of tame automorphisms of a smooth affine $3$-dimensional quadric, which we can view as the underlying variety of $\mathrm\{SL\}_2(\mathbb\{C\})$. We construct a square complex on which the group admits a natural cocompact action, and we prove that the complex is $\mathrm\{CAT\}(0)$ and hyperbolic. We propose two applications of this construction: We show that any finite subgroup in $\mathrm\{Tame\}(\mathrm\{SL\}_2)$ is linearizable, and that $\mathrm\{Tame\}(\mathrm\{SL\}_2)$ satisfies the Tits alternative.},
affiliation = {Dipartimento Matematica ed Informatica, Universitá di Ferrara Via Machiavelli n.35, 44121 Ferrara, Italy; Laboratoire MIA, Université de La Rochelle Avenue Michel Crépeau, 17000 La Rochelle, France; Institut de Mathématiques de Toulouse, Université Paul Sabatier 118 route de Narbonne, 31062 Toulouse Cedex 9, France},
author = {Bisi, Cinzia, Furter, Jean-Philippe, Lamy, Stéphane},
journal = {Journal de l’École polytechnique — Mathématiques},
keywords = {Automorphism group; affine quadric; cube complex; Tits alternative; automorphism group},
language = {eng},
pages = {161-223},
publisher = {École polytechnique},
title = {The tame automorphism group of an affine quadric threefold acting on a square complex},
url = {http://eudml.org/doc/275564},
volume = {1},
year = {2014},
}
TY - JOUR
AU - Bisi, Cinzia
AU - Furter, Jean-Philippe
AU - Lamy, Stéphane
TI - The tame automorphism group of an affine quadric threefold acting on a square complex
JO - Journal de l’École polytechnique — Mathématiques
PY - 2014
PB - École polytechnique
VL - 1
SP - 161
EP - 223
AB - We study the group $\mathrm{Tame}(\mathrm{SL}_2)$ of tame automorphisms of a smooth affine $3$-dimensional quadric, which we can view as the underlying variety of $\mathrm{SL}_2(\mathbb{C})$. We construct a square complex on which the group admits a natural cocompact action, and we prove that the complex is $\mathrm{CAT}(0)$ and hyperbolic. We propose two applications of this construction: We show that any finite subgroup in $\mathrm{Tame}(\mathrm{SL}_2)$ is linearizable, and that $\mathrm{Tame}(\mathrm{SL}_2)$ satisfies the Tits alternative.
LA - eng
KW - Automorphism group; affine quadric; cube complex; Tits alternative; automorphism group
UR - http://eudml.org/doc/275564
ER -
References
top- I. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch, M. Zaidenberg, Flexible varieties and automorphism groups, Duke Math. J. 162 (2013), 767-823 Zbl1295.14057MR3039680
- J. Alev, A note on Nagata’s automorphism, Automorphisms of affine spaces (Curaçao, 1994) (1995), 215-221, Kluwer Acad. Publ., Dordrecht Zbl0831.14004MR1352702
- F. Ardila, M. Owen, S. Sullivant, Geodesics in cubical complexes, Adv. in Appl. Math. 48 (2012), 142-163 Zbl1275.05055MR2845512
- M. R. Bridson, A. Haefliger, Metric spaces of non-positive curvature, 319 (1999), Springer-Verlag, Berlin Zbl0988.53001MR1744486
- W. Ballmann, J. Świątkowski, On groups acting on nonpositively curved cubical complexes, Enseign. Math. (2) 45 (1999), 51-81 Zbl0989.20029MR1703363
- S. Cantat, Sur les groupes de transformations birationnelles des surfaces, Ann. of Math. (2) 174 (2011), 299-340 Zbl1233.14011MR2811600
- S. Cantat, S. Lamy, Normal subgroups in the Cremona group, Acta Math. 210 (2013), 31-94 Zbl1278.14017MR3037611
- T.-C. Dinh, Tits alternative for automorphism groups of compact Kähler manifolds, Acta Math. Vietnamatica 37 (2012), 513-529 Zbl1271.14056MR3058661
- P. de la Harpe, Free groups in linear groups, Enseign. Math. (2) 29 (1983), 129-144 Zbl0517.20024MR702736
- M. A. Frumkin, A filtration in the three-dimensional Cremona group, Mat. Sb. (N.S.) 90(132) (1973), 196-213, 325 Zbl0254.14006MR327769
- M. Furushima, Finite groups of polynomial automorphisms in , Tohoku Math. J. (2) 35 (1983), 415-424 Zbl0567.32010MR711357
- M. H. Gizatullin, V. I. Danilov, Automorphisms of affine surfaces. II, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), 54-103 Zbl0357.14003MR437545
- T. Kambayashi, Automorphism group of a polynomial ring and algebraic group action on an affine space, J. Algebra 60 (1979), 439-451 Zbl0429.14017MR549939
- S. Kuroda, Shestakov-Umirbaev reductions and Nagata’s conjecture on a polynomial automorphism, Tohoku Math. J. (2) 62 (2010), 75-115 Zbl1210.14072MR2654304
- S. Lamy, L’alternative de Tits pour , J. Algebra 239 (2001), 413-437 Zbl1040.37031MR1832900
- S. Lamy, On the genus of birational maps between 3-folds, (2013)
- S. Lamy, S. Vénéreau, The tame and the wild automorphisms of an affine quadric threefold., J. Math. Soc. Japan 65 (2013), 299-320 Zbl1318.14059MR3034406
- I. Pan, Une remarque sur la génération du groupe de Cremona, Bol. Soc. Brasil. Mat. (N.S.) 30 (1999), 95-98 Zbl0972.14006MR1686984
- P. Papasoglu, Strongly geodesically automatic groups are hyperbolic, Invent. Math. 121 (1995), 323-334 Zbl0834.20040MR1346209
- I. Pays, A. Valette, Sous-groupes libres dans les groupes d’automorphismes d’arbres, Enseign. Math. (2) 37 (1991), 151-174 Zbl0744.20024MR1115748
- J.-P. Serre, Arbres, amalgames, , 46 (1977), Société Mathématique de France, Paris Zbl0369.20013MR476875
- J.-P. Serre, Cours d’arithmétique, (1977), Presses Universitaires de France, Paris Zbl0376.12001MR498338
- D. T. Wise, From riches to raags: 3-manifolds, right-angled Artin groups, and cubical geometry, 117 (2012), American Mathematical Society, Providence, RI Zbl1278.20055MR2986461
- D. Wright, The Amalgamated Product Structure of the Tame Automorphism Group in Dimension Three, (2013)
- D. Wright, Two-dimensional Cremona groups acting on simplicial complexes, Trans. Amer. Math. Soc. 331 (1992), 281-300 Zbl0767.14006MR1038019
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.