The tame automorphism group of an affine quadric threefold acting on a square complex

Cinzia Bisi[1]; Jean-Philippe Furter[2]; Stéphane Lamy[3]

  • [1] Dipartimento Matematica ed Informatica, Universitá di Ferrara Via Machiavelli n.35, 44121 Ferrara, Italy
  • [2] Laboratoire MIA, Université de La Rochelle Avenue Michel Crépeau, 17000 La Rochelle, France
  • [3] Institut de Mathématiques de Toulouse, Université Paul Sabatier 118 route de Narbonne, 31062 Toulouse Cedex 9, France

Journal de l’École polytechnique — Mathématiques (2014)

  • Volume: 1, page 161-223
  • ISSN: 2270-518X

Abstract

top
We study the group Tame ( SL 2 ) of tame automorphisms of a smooth affine 3 -dimensional quadric, which we can view as the underlying variety of SL 2 ( ) . We construct a square complex on which the group admits a natural cocompact action, and we prove that the complex is CAT ( 0 ) and hyperbolic. We propose two applications of this construction: We show that any finite subgroup in Tame ( SL 2 ) is linearizable, and that Tame ( SL 2 ) satisfies the Tits alternative.

How to cite

top

Bisi, Cinzia, Furter, Jean-Philippe, and Lamy, Stéphane. "The tame automorphism group of an affine quadric threefold acting on a square complex." Journal de l’École polytechnique — Mathématiques 1 (2014): 161-223. <http://eudml.org/doc/275564>.

@article{Bisi2014,
abstract = {We study the group $\mathrm\{Tame\}(\mathrm\{SL\}_2)$ of tame automorphisms of a smooth affine $3$-dimensional quadric, which we can view as the underlying variety of $\mathrm\{SL\}_2(\mathbb\{C\})$. We construct a square complex on which the group admits a natural cocompact action, and we prove that the complex is $\mathrm\{CAT\}(0)$ and hyperbolic. We propose two applications of this construction: We show that any finite subgroup in $\mathrm\{Tame\}(\mathrm\{SL\}_2)$ is linearizable, and that $\mathrm\{Tame\}(\mathrm\{SL\}_2)$ satisfies the Tits alternative.},
affiliation = {Dipartimento Matematica ed Informatica, Universitá di Ferrara Via Machiavelli n.35, 44121 Ferrara, Italy; Laboratoire MIA, Université de La Rochelle Avenue Michel Crépeau, 17000 La Rochelle, France; Institut de Mathématiques de Toulouse, Université Paul Sabatier 118 route de Narbonne, 31062 Toulouse Cedex 9, France},
author = {Bisi, Cinzia, Furter, Jean-Philippe, Lamy, Stéphane},
journal = {Journal de l’École polytechnique — Mathématiques},
keywords = {Automorphism group; affine quadric; cube complex; Tits alternative; automorphism group},
language = {eng},
pages = {161-223},
publisher = {École polytechnique},
title = {The tame automorphism group of an affine quadric threefold acting on a square complex},
url = {http://eudml.org/doc/275564},
volume = {1},
year = {2014},
}

TY - JOUR
AU - Bisi, Cinzia
AU - Furter, Jean-Philippe
AU - Lamy, Stéphane
TI - The tame automorphism group of an affine quadric threefold acting on a square complex
JO - Journal de l’École polytechnique — Mathématiques
PY - 2014
PB - École polytechnique
VL - 1
SP - 161
EP - 223
AB - We study the group $\mathrm{Tame}(\mathrm{SL}_2)$ of tame automorphisms of a smooth affine $3$-dimensional quadric, which we can view as the underlying variety of $\mathrm{SL}_2(\mathbb{C})$. We construct a square complex on which the group admits a natural cocompact action, and we prove that the complex is $\mathrm{CAT}(0)$ and hyperbolic. We propose two applications of this construction: We show that any finite subgroup in $\mathrm{Tame}(\mathrm{SL}_2)$ is linearizable, and that $\mathrm{Tame}(\mathrm{SL}_2)$ satisfies the Tits alternative.
LA - eng
KW - Automorphism group; affine quadric; cube complex; Tits alternative; automorphism group
UR - http://eudml.org/doc/275564
ER -

References

top
  1. I. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch, M. Zaidenberg, Flexible varieties and automorphism groups, Duke Math. J. 162 (2013), 767-823 Zbl1295.14057MR3039680
  2. J. Alev, A note on Nagata’s automorphism, Automorphisms of affine spaces (Curaçao, 1994) (1995), 215-221, Kluwer Acad. Publ., Dordrecht Zbl0831.14004MR1352702
  3. F. Ardila, M. Owen, S. Sullivant, Geodesics in CAT ( 0 ) cubical complexes, Adv. in Appl. Math. 48 (2012), 142-163 Zbl1275.05055MR2845512
  4. M. R. Bridson, A. Haefliger, Metric spaces of non-positive curvature, 319 (1999), Springer-Verlag, Berlin Zbl0988.53001MR1744486
  5. W. Ballmann, J. Świątkowski, On groups acting on nonpositively curved cubical complexes, Enseign. Math. (2) 45 (1999), 51-81 Zbl0989.20029MR1703363
  6. S. Cantat, Sur les groupes de transformations birationnelles des surfaces, Ann. of Math. (2) 174 (2011), 299-340 Zbl1233.14011MR2811600
  7. S. Cantat, S. Lamy, Normal subgroups in the Cremona group, Acta Math. 210 (2013), 31-94 Zbl1278.14017MR3037611
  8. T.-C. Dinh, Tits alternative for automorphism groups of compact Kähler manifolds, Acta Math. Vietnamatica 37 (2012), 513-529 Zbl1271.14056MR3058661
  9. P. de la Harpe, Free groups in linear groups, Enseign. Math. (2) 29 (1983), 129-144 Zbl0517.20024MR702736
  10. M. A. Frumkin, A filtration in the three-dimensional Cremona group, Mat. Sb. (N.S.) 90(132) (1973), 196-213, 325 Zbl0254.14006MR327769
  11. M. Furushima, Finite groups of polynomial automorphisms in C n , Tohoku Math. J. (2) 35 (1983), 415-424 Zbl0567.32010MR711357
  12. M. H. Gizatullin, V. I. Danilov, Automorphisms of affine surfaces. II, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), 54-103 Zbl0357.14003MR437545
  13. T. Kambayashi, Automorphism group of a polynomial ring and algebraic group action on an affine space, J. Algebra 60 (1979), 439-451 Zbl0429.14017MR549939
  14. S. Kuroda, Shestakov-Umirbaev reductions and Nagata’s conjecture on a polynomial automorphism, Tohoku Math. J. (2) 62 (2010), 75-115 Zbl1210.14072MR2654304
  15. S. Lamy, L’alternative de Tits pour Aut [ 2 ] , J. Algebra 239 (2001), 413-437 Zbl1040.37031MR1832900
  16. S. Lamy, On the genus of birational maps between 3-folds, (2013) 
  17. S. Lamy, S. Vénéreau, The tame and the wild automorphisms of an affine quadric threefold., J. Math. Soc. Japan 65 (2013), 299-320 Zbl1318.14059MR3034406
  18. I. Pan, Une remarque sur la génération du groupe de Cremona, Bol. Soc. Brasil. Mat. (N.S.) 30 (1999), 95-98 Zbl0972.14006MR1686984
  19. P. Papasoglu, Strongly geodesically automatic groups are hyperbolic, Invent. Math. 121 (1995), 323-334 Zbl0834.20040MR1346209
  20. I. Pays, A. Valette, Sous-groupes libres dans les groupes d’automorphismes d’arbres, Enseign. Math. (2) 37 (1991), 151-174 Zbl0744.20024MR1115748
  21. J.-P. Serre, Arbres, amalgames, SL 2 , 46 (1977), Société Mathématique de France, Paris Zbl0369.20013MR476875
  22. J.-P. Serre, Cours d’arithmétique, (1977), Presses Universitaires de France, Paris Zbl0376.12001MR498338
  23. D. T. Wise, From riches to raags: 3-manifolds, right-angled Artin groups, and cubical geometry, 117 (2012), American Mathematical Society, Providence, RI Zbl1278.20055MR2986461
  24. D. Wright, The Amalgamated Product Structure of the Tame Automorphism Group in Dimension Three, (2013) 
  25. D. Wright, Two-dimensional Cremona groups acting on simplicial complexes, Trans. Amer. Math. Soc. 331 (1992), 281-300 Zbl0767.14006MR1038019

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.