Parity sheaves, moment graphs and the p -smooth locus of Schubert varieties

Peter Fiebig[1]; Geordie Williamson[2]

  • [1] Emmy-Noether-Zentrum FAY Erlangen-Nürnberg Cauerstr. 11 91058 Erlangen (Germany)
  • [2] Max-Planck-Institut für Mathematik Vivatsgasse 7 53111 Bonn (Germany)

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 2, page 489-536
  • ISSN: 0373-0956

Abstract

top
We show that the Braden-MacPherson algorithm computes the stalks of parity sheaves. As a consequence we deduce that the Braden-MacPherson algorithm may be used to calculate the characters of tilting modules for algebraic groups and show that the p -smooth locus of a (Kac-Moody) Schubert variety coincides with the rationally smooth locus, if the underlying Bruhat graph satisfies a GKM-condition.

How to cite

top

Fiebig, Peter, and Williamson, Geordie. "Parity sheaves, moment graphs and the $p$-smooth locus of Schubert varieties." Annales de l’institut Fourier 64.2 (2014): 489-536. <http://eudml.org/doc/275566>.

@article{Fiebig2014,
abstract = {We show that the Braden-MacPherson algorithm computes the stalks of parity sheaves. As a consequence we deduce that the Braden-MacPherson algorithm may be used to calculate the characters of tilting modules for algebraic groups and show that the $p$-smooth locus of a (Kac-Moody) Schubert variety coincides with the rationally smooth locus, if the underlying Bruhat graph satisfies a GKM-condition.},
affiliation = {Emmy-Noether-Zentrum FAY Erlangen-Nürnberg Cauerstr. 11 91058 Erlangen (Germany); Max-Planck-Institut für Mathematik Vivatsgasse 7 53111 Bonn (Germany)},
author = {Fiebig, Peter, Williamson, Geordie},
journal = {Annales de l’institut Fourier},
keywords = {Modular representation theory; equivariant cohomology; moment graphs; constructible sheaves; tilting modules; Schubert varieties; $p$-smooth locus; modular representation theory; -smooth locus},
language = {eng},
number = {2},
pages = {489-536},
publisher = {Association des Annales de l’institut Fourier},
title = {Parity sheaves, moment graphs and the $p$-smooth locus of Schubert varieties},
url = {http://eudml.org/doc/275566},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Fiebig, Peter
AU - Williamson, Geordie
TI - Parity sheaves, moment graphs and the $p$-smooth locus of Schubert varieties
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 2
SP - 489
EP - 536
AB - We show that the Braden-MacPherson algorithm computes the stalks of parity sheaves. As a consequence we deduce that the Braden-MacPherson algorithm may be used to calculate the characters of tilting modules for algebraic groups and show that the $p$-smooth locus of a (Kac-Moody) Schubert variety coincides with the rationally smooth locus, if the underlying Bruhat graph satisfies a GKM-condition.
LA - eng
KW - Modular representation theory; equivariant cohomology; moment graphs; constructible sheaves; tilting modules; Schubert varieties; $p$-smooth locus; modular representation theory; -smooth locus
UR - http://eudml.org/doc/275566
ER -

References

top
  1. Alberto Arabia, Classes d’Euler équivariantes et points rationnellement lisses, Ann. Inst. Fourier (Grenoble) 48 (1998), 861-912 Zbl0899.14023MR1644106
  2. Séminaire Heidelberg-Strasbourg, 1966/1967 : Dualité de Poincaré, (1969), BarthelG.G. 
  3. A. A. Beĭlinson, J. Bernstein, P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) 100 (1982), 5-171, Soc. Math. France, Paris MR751966
  4. Alexandre Beĭlinson, Joseph Bernstein, Localisation de g -modules, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), 15-18 Zbl0476.14019MR610137
  5. Joseph Bernstein, Valery Lunts, Equivariant sheaves and functors, 1578 (1994), Springer-Verlag, Berlin Zbl0808.14038MR1299527
  6. Tom Braden, Hyperbolic localization of intersection cohomology, Transform. Groups 8 (2003), 209-216 Zbl1026.14005MR1996415
  7. Tom Braden, Robert MacPherson, From moment graphs to intersection cohomology, Math. Ann. 321 (2001), 533-551 Zbl1077.14522MR1871967
  8. Michel Brion, Equivariant cohomology and equivariant intersection theory, Representation theories and algebraic geometry (Montreal, PQ, 1997) 514 (1998), 1-37, Kluwer Acad. Publ., Dordrecht Zbl0946.14008MR1649623
  9. J. B. Carrell, R. M. Goresky, A decomposition theorem for the integral homology of a variety, Invent. Math. 73 (1983), 367-381 Zbl0533.14008MR718936
  10. James B. Carrell, The Bruhat graph of a Coxeter group, a conjecture of Deodhar, and rational smoothness of Schubert varieties, Algebraic groups and their generalizations: classical methods (University Park, PA, 1991) 56 (1994), 53-61, Amer. Math. Soc., Providence, RI Zbl0818.14020MR1278700
  11. Theodore Chang, Tor Skjelbred, The topological Schur lemma and related results, Ann. of Math. (2) 100 (1974), 307-321 Zbl0249.57023MR375357
  12. James Dugundji, Topology, (1966), Allyn and Bacon Inc., Boston, Mass. Zbl0397.54003MR193606
  13. M. J. Dyer, The nil Hecke ring and Deodhar’s conjecture on Bruhat intervals, Invent. Math. 111 (1993), 571-574 Zbl0813.20043MR1202136
  14. M. J. Dyer, Rank two detection of singularities of Schubert varieties, (2005) 
  15. Peter Fiebig, Lusztig’s conjecture as a moment graph problem, Bull. Lond. Math. Soc. 42 (2010), 957-972 Zbl1234.20054MR2740015
  16. Peter Fiebig, The multiplicity one case of Lusztig’s conjecture, Duke Math. J. 153 (2010), 551-571 Zbl1207.20040MR2667425
  17. Peter Fiebig, Sheaves on affine Schubert varieties, modular representations, and Lusztig’s conjecture, J. Amer. Math. Soc. 24 (2011), 133-181 Zbl1270.20053MR2726602
  18. William Fulton, Young tableaux, 35 (1997), Cambridge University Press, Cambridge Zbl0878.14034MR1464693
  19. Mark Goresky, Robert Kottwitz, Robert MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1998), 25-83 Zbl0897.22009MR1489894
  20. Jens Carsten Jantzen, Representations of algebraic groups, 107 (2003), American Mathematical Society, Providence, RI Zbl1034.20041MR2015057
  21. Jens Carsten Jantzen, Moment graphs and representations, Séminaires et Congrès 24 (2010), 227-318 Zbl06313054
  22. D. Juteau, C. Mautner, G. Williamson, Parity sheaves and tilting modules MR3230821
  23. D. Juteau, C. Mautner, G. Williamson, Parity sheaves, (2009) MR3230821
  24. D. Juteau, C. Mautner, G. Williamson, Perverse sheaves and modular representation theory, Séminaires et Congrès 24 (2012), 313-350 Zbl1312.14053MR3203032
  25. D. Juteau, G. Williamson, Kumar’s criterion modulo p , (2011) 
  26. Daniel Juteau, Decomposition numbers for perverse sheaves, Ann. Inst. Fourier (Grenoble) 59 (2009), 1177-1229 Zbl1187.14022MR2543666
  27. Masaki Kashiwara, Pierre Schapira, Sheaves on manifolds, 292 (1994), Springer-Verlag, Berlin Zbl0709.18001MR1299726
  28. Friedrich Knop, Hanspeter Kraft, Domingo Luna, Thierry Vust, Local properties of algebraic group actions, Algebraische Transformationsgruppen und Invariantentheorie 13 (1989), 63-75, Birkhäuser, Basel Zbl0722.14032MR1044585
  29. Shrawan Kumar, The nil Hecke ring and singularity of Schubert varieties, Invent. Math. 123 (1996), 471-506 Zbl0863.14031MR1383959
  30. Shrawan Kumar, Kac-Moody groups, their flag varieties and representation theory, 204 (2002), Birkhäuser Boston Inc., Boston, MA Zbl1026.17030MR1923198
  31. George Lusztig, Singularities, character formulas, and a q -analog of weight multiplicities, Analysis and topology on singular spaces, II, III (Luminy, 1981) 101 (1983), 208-229, Soc. Math. France, Paris Zbl0561.22013MR737932
  32. John W. Milnor, James D. Stasheff, Characteristic classes, (1974), Princeton University Press, Princeton, N. J. Zbl0298.57008MR440554
  33. I. Mirković, K. Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2) 166 (2007), 95-143 Zbl1138.22013MR2342692
  34. Wolfgang Soergel, On the relation between intersection cohomology and representation theory in positive characteristic, J. Pure Appl. Algebra 152 (2000), 311-335 Zbl1101.14302MR1784005
  35. N. Spaltenstein, Resolutions of unbounded complexes, Compositio Math. 65 (1988), 121-154 Zbl0636.18006MR932640
  36. T. A. Springer, Quelques applications de la cohomologie d’intersection, Bourbaki Seminar, Vol. 1981/1982 92 (1982), 249-273, Soc. Math. France, Paris Zbl0526.22014MR689533
  37. T. A. Springer, A purity result for fixed point varieties in flag manifolds, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 31 (1984), 271-282 Zbl0581.20048MR763421
  38. Hideyasu Sumihiro, Equivariant completion, J. Math. Kyoto Univ. 14 (1974), 1-28 Zbl0277.14008MR337963

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.