Parity sheaves, moment graphs and the -smooth locus of Schubert varieties
Peter Fiebig[1]; Geordie Williamson[2]
- [1] Emmy-Noether-Zentrum FAY Erlangen-Nürnberg Cauerstr. 11 91058 Erlangen (Germany)
- [2] Max-Planck-Institut für Mathematik Vivatsgasse 7 53111 Bonn (Germany)
Annales de l’institut Fourier (2014)
- Volume: 64, Issue: 2, page 489-536
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topFiebig, Peter, and Williamson, Geordie. "Parity sheaves, moment graphs and the $p$-smooth locus of Schubert varieties." Annales de l’institut Fourier 64.2 (2014): 489-536. <http://eudml.org/doc/275566>.
@article{Fiebig2014,
abstract = {We show that the Braden-MacPherson algorithm computes the stalks of parity sheaves. As a consequence we deduce that the Braden-MacPherson algorithm may be used to calculate the characters of tilting modules for algebraic groups and show that the $p$-smooth locus of a (Kac-Moody) Schubert variety coincides with the rationally smooth locus, if the underlying Bruhat graph satisfies a GKM-condition.},
affiliation = {Emmy-Noether-Zentrum FAY Erlangen-Nürnberg Cauerstr. 11 91058 Erlangen (Germany); Max-Planck-Institut für Mathematik Vivatsgasse 7 53111 Bonn (Germany)},
author = {Fiebig, Peter, Williamson, Geordie},
journal = {Annales de l’institut Fourier},
keywords = {Modular representation theory; equivariant cohomology; moment graphs; constructible sheaves; tilting modules; Schubert varieties; $p$-smooth locus; modular representation theory; -smooth locus},
language = {eng},
number = {2},
pages = {489-536},
publisher = {Association des Annales de l’institut Fourier},
title = {Parity sheaves, moment graphs and the $p$-smooth locus of Schubert varieties},
url = {http://eudml.org/doc/275566},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Fiebig, Peter
AU - Williamson, Geordie
TI - Parity sheaves, moment graphs and the $p$-smooth locus of Schubert varieties
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 2
SP - 489
EP - 536
AB - We show that the Braden-MacPherson algorithm computes the stalks of parity sheaves. As a consequence we deduce that the Braden-MacPherson algorithm may be used to calculate the characters of tilting modules for algebraic groups and show that the $p$-smooth locus of a (Kac-Moody) Schubert variety coincides with the rationally smooth locus, if the underlying Bruhat graph satisfies a GKM-condition.
LA - eng
KW - Modular representation theory; equivariant cohomology; moment graphs; constructible sheaves; tilting modules; Schubert varieties; $p$-smooth locus; modular representation theory; -smooth locus
UR - http://eudml.org/doc/275566
ER -
References
top- Alberto Arabia, Classes d’Euler équivariantes et points rationnellement lisses, Ann. Inst. Fourier (Grenoble) 48 (1998), 861-912 Zbl0899.14023MR1644106
- Séminaire Heidelberg-Strasbourg, 1966/1967 : Dualité de Poincaré, (1969), BarthelG.G.
- A. A. Beĭlinson, J. Bernstein, P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) 100 (1982), 5-171, Soc. Math. France, Paris MR751966
- Alexandre Beĭlinson, Joseph Bernstein, Localisation de -modules, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), 15-18 Zbl0476.14019MR610137
- Joseph Bernstein, Valery Lunts, Equivariant sheaves and functors, 1578 (1994), Springer-Verlag, Berlin Zbl0808.14038MR1299527
- Tom Braden, Hyperbolic localization of intersection cohomology, Transform. Groups 8 (2003), 209-216 Zbl1026.14005MR1996415
- Tom Braden, Robert MacPherson, From moment graphs to intersection cohomology, Math. Ann. 321 (2001), 533-551 Zbl1077.14522MR1871967
- Michel Brion, Equivariant cohomology and equivariant intersection theory, Representation theories and algebraic geometry (Montreal, PQ, 1997) 514 (1998), 1-37, Kluwer Acad. Publ., Dordrecht Zbl0946.14008MR1649623
- J. B. Carrell, R. M. Goresky, A decomposition theorem for the integral homology of a variety, Invent. Math. 73 (1983), 367-381 Zbl0533.14008MR718936
- James B. Carrell, The Bruhat graph of a Coxeter group, a conjecture of Deodhar, and rational smoothness of Schubert varieties, Algebraic groups and their generalizations: classical methods (University Park, PA, 1991) 56 (1994), 53-61, Amer. Math. Soc., Providence, RI Zbl0818.14020MR1278700
- Theodore Chang, Tor Skjelbred, The topological Schur lemma and related results, Ann. of Math. (2) 100 (1974), 307-321 Zbl0249.57023MR375357
- James Dugundji, Topology, (1966), Allyn and Bacon Inc., Boston, Mass. Zbl0397.54003MR193606
- M. J. Dyer, The nil Hecke ring and Deodhar’s conjecture on Bruhat intervals, Invent. Math. 111 (1993), 571-574 Zbl0813.20043MR1202136
- M. J. Dyer, Rank two detection of singularities of Schubert varieties, (2005)
- Peter Fiebig, Lusztig’s conjecture as a moment graph problem, Bull. Lond. Math. Soc. 42 (2010), 957-972 Zbl1234.20054MR2740015
- Peter Fiebig, The multiplicity one case of Lusztig’s conjecture, Duke Math. J. 153 (2010), 551-571 Zbl1207.20040MR2667425
- Peter Fiebig, Sheaves on affine Schubert varieties, modular representations, and Lusztig’s conjecture, J. Amer. Math. Soc. 24 (2011), 133-181 Zbl1270.20053MR2726602
- William Fulton, Young tableaux, 35 (1997), Cambridge University Press, Cambridge Zbl0878.14034MR1464693
- Mark Goresky, Robert Kottwitz, Robert MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1998), 25-83 Zbl0897.22009MR1489894
- Jens Carsten Jantzen, Representations of algebraic groups, 107 (2003), American Mathematical Society, Providence, RI Zbl1034.20041MR2015057
- Jens Carsten Jantzen, Moment graphs and representations, Séminaires et Congrès 24 (2010), 227-318 Zbl06313054
- D. Juteau, C. Mautner, G. Williamson, Parity sheaves and tilting modules MR3230821
- D. Juteau, C. Mautner, G. Williamson, Parity sheaves, (2009) MR3230821
- D. Juteau, C. Mautner, G. Williamson, Perverse sheaves and modular representation theory, Séminaires et Congrès 24 (2012), 313-350 Zbl1312.14053MR3203032
- D. Juteau, G. Williamson, Kumar’s criterion modulo , (2011)
- Daniel Juteau, Decomposition numbers for perverse sheaves, Ann. Inst. Fourier (Grenoble) 59 (2009), 1177-1229 Zbl1187.14022MR2543666
- Masaki Kashiwara, Pierre Schapira, Sheaves on manifolds, 292 (1994), Springer-Verlag, Berlin Zbl0709.18001MR1299726
- Friedrich Knop, Hanspeter Kraft, Domingo Luna, Thierry Vust, Local properties of algebraic group actions, Algebraische Transformationsgruppen und Invariantentheorie 13 (1989), 63-75, Birkhäuser, Basel Zbl0722.14032MR1044585
- Shrawan Kumar, The nil Hecke ring and singularity of Schubert varieties, Invent. Math. 123 (1996), 471-506 Zbl0863.14031MR1383959
- Shrawan Kumar, Kac-Moody groups, their flag varieties and representation theory, 204 (2002), Birkhäuser Boston Inc., Boston, MA Zbl1026.17030MR1923198
- George Lusztig, Singularities, character formulas, and a -analog of weight multiplicities, Analysis and topology on singular spaces, II, III (Luminy, 1981) 101 (1983), 208-229, Soc. Math. France, Paris Zbl0561.22013MR737932
- John W. Milnor, James D. Stasheff, Characteristic classes, (1974), Princeton University Press, Princeton, N. J. Zbl0298.57008MR440554
- I. Mirković, K. Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2) 166 (2007), 95-143 Zbl1138.22013MR2342692
- Wolfgang Soergel, On the relation between intersection cohomology and representation theory in positive characteristic, J. Pure Appl. Algebra 152 (2000), 311-335 Zbl1101.14302MR1784005
- N. Spaltenstein, Resolutions of unbounded complexes, Compositio Math. 65 (1988), 121-154 Zbl0636.18006MR932640
- T. A. Springer, Quelques applications de la cohomologie d’intersection, Bourbaki Seminar, Vol. 1981/1982 92 (1982), 249-273, Soc. Math. France, Paris Zbl0526.22014MR689533
- T. A. Springer, A purity result for fixed point varieties in flag manifolds, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 31 (1984), 271-282 Zbl0581.20048MR763421
- Hideyasu Sumihiro, Equivariant completion, J. Math. Kyoto Univ. 14 (1974), 1-28 Zbl0277.14008MR337963
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.