Stability in the energy space for chains of solitons of the one-dimensional Gross-Pitaevskii equation
Fabrice Béthuel[1]; Philippe Gravejat[2]; Didier Smets[1]
- [1] Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, Boîte Courrier 187, 75252 Paris Cedex 05, France.
- [2] Centre de Mathématiques Laurent Schwartz, École Polytechnique, 91128 Palaiseau Cedex, France.
Annales de l’institut Fourier (2014)
- Volume: 64, Issue: 1, page 19-70
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBéthuel, Fabrice, Gravejat, Philippe, and Smets, Didier. "Stability in the energy space for chains of solitons of the one-dimensional Gross-Pitaevskii equation." Annales de l’institut Fourier 64.1 (2014): 19-70. <http://eudml.org/doc/275571>.
@article{Béthuel2014,
abstract = {We establish the stability in the energy space for sums of solitons of the one-dimensional Gross-Pitaevskii equation when their speeds are mutually distinct and distinct from zero, and when the solitons are initially well-separated and spatially ordered according to their speeds.},
affiliation = {Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, Boîte Courrier 187, 75252 Paris Cedex 05, France.; Centre de Mathématiques Laurent Schwartz, École Polytechnique, 91128 Palaiseau Cedex, France.; Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, Boîte Courrier 187, 75252 Paris Cedex 05, France.},
author = {Béthuel, Fabrice, Gravejat, Philippe, Smets, Didier},
journal = {Annales de l’institut Fourier},
keywords = {Gross-Pitaevskii equation; sums of solitons; stability},
language = {eng},
number = {1},
pages = {19-70},
publisher = {Association des Annales de l’institut Fourier},
title = {Stability in the energy space for chains of solitons of the one-dimensional Gross-Pitaevskii equation},
url = {http://eudml.org/doc/275571},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Béthuel, Fabrice
AU - Gravejat, Philippe
AU - Smets, Didier
TI - Stability in the energy space for chains of solitons of the one-dimensional Gross-Pitaevskii equation
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 1
SP - 19
EP - 70
AB - We establish the stability in the energy space for sums of solitons of the one-dimensional Gross-Pitaevskii equation when their speeds are mutually distinct and distinct from zero, and when the solitons are initially well-separated and spatially ordered according to their speeds.
LA - eng
KW - Gross-Pitaevskii equation; sums of solitons; stability
UR - http://eudml.org/doc/275571
ER -
References
top- F. Béthuel, P. Gravejat, J.-C. Saut, Existence and properties of travelling waves for the Gross-Pitaevskii equation, Stationary and time dependent Gross-Pitaevskii equations 473 (2008), 55-104, FarinaA.A. Zbl1216.35132MR2522014
- F. Béthuel, P. Gravejat, J.-C. Saut, D. Smets, Orbital stability of the black soliton for the Gross-Pitaevskii equation, Indiana Univ. Math. J 57 (2008), 2611-2642 Zbl1171.35012MR2482993
- F. Béthuel, P. Gravejat, J.-C. Saut, D. Smets, On the Korteweg-de Vries long-wave approximation of the Gross-Pitaevskii equation I, Int. Math. Res. Not. 2009 (2009), 2700-2748 Zbl1183.35240MR2520771
- F. Béthuel, P. Gravejat, J.-C. Saut, D. Smets, On the Korteweg-de Vries long-wave approximation of the Gross-Pitaevskii equation II, Comm. Partial Differential Equations 35 (2010), 113-164 Zbl1213.35367MR2748620
- D. Chiron, Travelling waves for the nonlinear Schrödinger equation with general nonlinearity in dimension one, Nonlinearity 25 (2012), 813-850 Zbl1278.35226MR2887994
- D. Chiron, F. Rousset, The KdV/KP-I limit of the nonlinear Schrödinger equation, SIAM J. Math. Anal. 42 (2010), 64-96 Zbl1210.35229MR2596546
- N. Dunford, J.T. Schwartz, Linear operators. Part II. Spectral theory. Self-adjoint operators in Hilbert space, 7 (1963), Interscience Publishers, John Wiley and Sons, New York-London-Sydney Zbl0635.47002MR188745
- L.D. Faddeev, L.A. Takhtajan, Hamiltonian methods in the theory of solitons, (2007), Springer-Verlag, Berlin-Heidelberg-New York Zbl1111.37001MR2348643
- C. Gallo, Schrödinger group on Zhidkov spaces, Adv. Differential Equations 9 (2004), 509-538 Zbl1103.35093MR2099970
- P. Gérard, The Cauchy problem for the Gross-Pitaevskii equation, Ann. Inst. Henri Poincaré, Analyse Non Linéaire 23 (2006), 765-779 Zbl1122.35133
- P. Gérard, Z. Zhang, Orbital stability of traveling waves for the one-dimensional Gross-Pitaevskii equation, J. Math. Pures Appl. 91 (2009), 178-210 Zbl1232.35152MR2498754
- M. Grillakis, J. Shatah, W.A. Strauss, Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal. 74 (1987), 160-197 Zbl0656.35122MR901236
- Z. Lin, Stability and instability of traveling solitonic bubbles, Adv. Differential Equations 7 (2002), 897-918 Zbl1033.35117MR1895111
- Y. Martel, F. Merle, Stability of two soliton collision for nonintegrable gKdV equations, Commun. Math. Phys. 286 (2009), 39-79 Zbl1179.35291MR2470923
- Y. Martel, F. Merle, Inelastic interaction of nearly equal solitons for the quartic gKdV equation, Invent. Math. 183 (2011), 563-648 Zbl1230.35121MR2772088
- Y. Martel, F. Merle, T.-P. Tsai, Stability and asymptotic stability in the energy space of the sum of solitons for subcritical gKdV equations, Commun. Math. Phys. 231 (2002), 347-373 Zbl1017.35098MR1946336
- Y. Martel, F. Merle, T.-P. Tsai, Stability in of the sum of solitary waves for some nonlinear Schrödinger equations, Duke Math. J. 133 (2006), 405-466 Zbl1099.35134MR2228459
- R.M. Miura, The Korteweg- de Vries equation: a survey of results, SIAM Rev. 18 (1976), 412-459 Zbl0333.35021MR404890
- H.M. Tartousi
- A.H. Vartanian, Long-time asymptotics of solutions to the Cauchy problem for the defocusing nonlinear Schrödinger equation with finite-density initial data. II. Dark solitons on continua, Math. Phys. Anal. Geom. 5 (2002), 319-413 Zbl1080.35060MR1942685
- V.E. Zakharov, A.B. Shabat, Interaction between solitons in a stable medium, Sov. Phys. JETP 37 (1973), 823-828
- P.E. Zhidkov, Korteweg-De Vries and nonlinear Schrödinger equations : qualitative theory, 1756 (2001), Springer-Verlag, Berlin Zbl0987.35001MR1831831
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.