Stabilité des solitons de l’équation de Landau-Lifshitz à anisotropie planaire
André de Laire[1]; Philippe Gravejat[2]
- [1] Laboratoire Paul Painlevé Université Lille 1 59655 Villeneuve d’Ascq Cedex France
- [2] Centre de Mathématiques Laurent Schwartz École polytechnique 91128 Palaiseau Cedex France
Séminaire Laurent Schwartz — EDP et applications (2014-2015)
- Volume: 258, Issue: 1, page 1-27
- ISSN: 2266-0607
Access Full Article
topAbstract
topHow to cite
topde Laire, André, and Gravejat, Philippe. "Stabilité des solitons de l’équation de Landau-Lifshitz à anisotropie planaire." Séminaire Laurent Schwartz — EDP et applications 258.1 (2014-2015): 1-27. <http://eudml.org/doc/275726>.
@article{deLaire2014-2015,
abstract = {Cet exposé présente plusieurs résultats récents quant à la stabilité des solitons sombres de l’équation de Landau-Lifshitz à anisotropie planaire, en particulier, quant à la stabilité orbitale des trains (bien préparés) de solitons gris [16] et à la stabilité asymptotique de ces mêmes solitons [2].},
affiliation = {Laboratoire Paul Painlevé Université Lille 1 59655 Villeneuve d’Ascq Cedex France; Centre de Mathématiques Laurent Schwartz École polytechnique 91128 Palaiseau Cedex France},
author = {de Laire, André, Gravejat, Philippe},
journal = {Séminaire Laurent Schwartz — EDP et applications},
keywords = {orbital stability; solitons; Landau-Lifshitz equation},
language = {fre},
number = {1},
pages = {1-27},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Stabilité des solitons de l’équation de Landau-Lifshitz à anisotropie planaire},
url = {http://eudml.org/doc/275726},
volume = {258},
year = {2014-2015},
}
TY - JOUR
AU - de Laire, André
AU - Gravejat, Philippe
TI - Stabilité des solitons de l’équation de Landau-Lifshitz à anisotropie planaire
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2014-2015
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 258
IS - 1
SP - 1
EP - 27
AB - Cet exposé présente plusieurs résultats récents quant à la stabilité des solitons sombres de l’équation de Landau-Lifshitz à anisotropie planaire, en particulier, quant à la stabilité orbitale des trains (bien préparés) de solitons gris [16] et à la stabilité asymptotique de ces mêmes solitons [2].
LA - fre
KW - orbital stability; solitons; Landau-Lifshitz equation
UR - http://eudml.org/doc/275726
ER -
References
top- Z.S. Agranovich and V.A. Marchenko, The inverse problem of scattering theory, Gordon and Breach Science Publishers, New York, 1963, Translated from the Russian by B.D. Seckler. Zbl0117.06003MR162497
- Y. Bahri, Asymptotic stability in the energy space for dark solitons of the Landau-Lifshitz equation, Preprint (2015).
- I. Bejenaru, A.D. Ionescu, C.E. Kenig, and D. Tataru, Global Schrödinger maps in dimensions : Small data in the critical Sobolev spaces, Annals of Math. 173 (2011), no. 3, 1443–1506. Zbl1233.35112MR2800718
- F. Béthuel, P. Gravejat, and J.-C. Saut, Existence and properties of travelling waves for the Gross-Pitaevskii equation, Stationary and time dependent Gross-Pitaevskii equations (A. Farina and J.-C. Saut, eds.), Contemp. Math., vol. 473, Amer. Math. Soc., Providence, RI, 2008, pp. 55–104. Zbl1216.35132MR2522014
- —, On the KP-I transonic limit of two-dimensional Gross-Pitaevskii travelling waves, Dynamics of PDE 5 (2008), no. 3, 241–280. Zbl1186.35199MR2455894
- F. Béthuel, P. Gravejat, J.-C. Saut, and D. Smets, Orbital stability of the black soliton for the Gross-Pitaevskii equation, Indiana Univ. Math. J 57 (2008), no. 6, 2611–2642. Zbl1171.35012MR2482993
- F. Béthuel, P. Gravejat, and D. Smets, Stability in the energy space for chains of solitons of the one-dimensional Gross-Pitaevskii equation, Ann. Inst. Fourier 64 (2014), no. 1. Zbl1337.35131MR3330540
- —, Asymptotic stability in the energy space for dark solitons of the Gross-Pitaevskii equation, Ann. Sci. Éc. Norm. Sup. in press (2015), http://hal.archives-ouvertes.fr/hal-00767588v2. Zbl06543145
- R.F. Bikbaev, A.I. Bobenko, and A.R. Its, Landau-Lifshitz equation, uniaxial anisotropy case : Theory of exact solutions, Theoret. and Math. Phys. 178 (2014), no. 2, 143–193. Zbl1303.82038MR3301512
- T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10, Amer. Math. Soc., Providence, 2003. Zbl1055.35003MR2002047
- T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Commun. Math. Phys. 85 (1982), no. 4, 549–561. Zbl0513.35007MR677997
- N.-H. Chang, J. Shatah, and K. Uhlenbeck, Schrödinger maps, Commun. Pure Appl. Math. 53 (2000), no. 5, 590–602. Zbl1028.35134MR1737504
- D. Chiron and M. Maris, Rarefaction pulses for the nonlinear Schrödinger equation in the transonic limit, Commun. Math. Phys. 326 (2014), no. 2, 329–392. Zbl1292.35274MR3165458
- S. Cuccagna and R. Jenkins, On asymptotic stability of N-solitons of the Gross-Pitaevskii equation, Preprint (2014), http://arxiv.org/abs/1410.6887. MR3180733
- A. de Laire, Minimal energy for the traveling waves of the Landau-Lifshitz equation, SIAM J. Math. Anal. 46 (2014), no. 1, 96–132. Zbl1305.35123MR3148081
- A. de Laire and P. Gravejat, Stability in the energy space for chains of solitons of the Landau-Lifshitz equation, J. Differential Equations 258 (2015), no. 1, 1–80. Zbl1301.35173MR3271297
- K. El Dika, Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation, Disc. Cont. Dynam. Syst. 13 (2005), no. 3, 583–622. Zbl1083.35019MR2152333
- W. Ding and Y. Wang, Schrödinger flow of maps into symplectic manifolds, Sci. China Ser. A 41 (1998), no. 7, 746–755. Zbl0918.53017MR1633799
- L.D. Faddeev and L.A. Takhtajan, Hamiltonian methods in the theory of solitons, Classics in Mathematics, Springer-Verlag, Berlin, 2007, Translated by A.G. Reyman. Zbl1111.37001MR2348643
- I.M. Gel’fand and B.M. Levitan, On the determination of a differential equation from its spectral function, Izvestiya Akad. Nauk. SSSR Ser. Mat. 15 (1951), 309–360. Zbl0044.09301MR45281
- P. Gérard, The Gross-Pitaevskii equation in the energy space, Stationary and time dependent Gross-Pitaevskii equations (A. Farina and J.-C. Saut, eds.), Contemp. Math., vol. 473, Amer. Math. Soc., Providence, RI, 2008, pp. 129–148. Zbl1166.35373MR2522016
- P. Gérard and Z. Zhang, Orbital stability of traveling waves for the one-dimensional Gross-Pitaevskii equation, J. Math. Pures Appl. 91 (2009), no. 2, 178–210. Zbl1232.35152MR2498754
- P. Gravejat, Quelques contributions à l’analyse mathématique de l’équation de Gross-Pitaevskii et du modèle de Bogoliubov-Dirac-Fock, Habilitation thesis, Université Paris Dauphine, December 2011.
- P. Gravejat and D. Smets, Asymptotic stability of the black soliton for the Gross-Pitaevskii equation, Preprint (2014), http://hal.archives-ouvertes.fr/hal-01002094v1. Zbl1326.35346
- M. Grillakis, J. Shatah, and W.A. Strauss, Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal. 74 (1987), no. 1, 160–197. Zbl0656.35122MR901236
- E.P. Gross, Hydrodynamics of a superfluid condensate, J. Math. Phys. 4 (1963), no. 2, 195–207.
- B. Guo and S. Ding, Landau-Lifshitz equations, Frontiers of Research with the Chinese Academy of Sciences, vol. 1, World Scientific, Hackensack, 2008. Zbl1158.35096MR2432099
- R. Jerrard and D. Smets, On Schrödinger maps from to , Ann. Sci. Éc. Norm. Sup. 45 (2012), no. 4, 635–678. MR3059243
- C.A. Jones, S.J. Putterman, and P.H. Roberts, Motions in a Bose condensate V. Stability of solitary wave solutions of nonlinear Schrödinger equations in two and three dimensions, J. Phys. A, Math. Gen. 19 (1986), 2991–3011.
- C.A. Jones and P.H. Roberts, Motions in a Bose condensate IV. Axisymmetric solitary waves, J. Phys. A, Math. Gen. 15 (1982), 2599–2619.
- B.B. Kadomtsev and V.I. Petviashvili, On the stability of solitary waves in weakly dispersing media, Sov. Phys. Dokl. 15 (1970), no. 6, 539–541. Zbl0217.25004
- C.E. Kenig and Y. Martel, Asymptotic stability of solitons for the Benjamin-Ono equation, Rev. Mat. Iberoamericana 25 (2009), no. 3, 909–970. Zbl1247.35133MR2590690
- C.E. Kenig, G. Ponce, and L. Vega, On unique continuation for nonlinear Schrödinger equations, Commun. Pure Appl. Math. 56 (2003), no. 9, 1247–1262. Zbl1041.35072MR1980854
- Y.S. Kivshar and B. Luther-Davies, Dark optical solitons : physics and applications, Phys. Rep. 298 (1998), no. 2-3, 81–197.
- L.D. Landau and E.M. Lifshitz, On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, Phys. Zeitsch. der Sow. 8 (1935), 153–169. Zbl0012.28501
- P.D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure Appl. Math. 21 (1968), no. 5, 467–490. Zbl0162.41103MR235310
- F. Lin and J. Wei, Traveling wave solutions of the Schrödinger map equation, Commun. Pure Appl. Math. 63 (2010), no. 12, 1585–1621. Zbl1206.35062MR2742008
- F. Linares and G. Ponce, Introduction to nonlinear dispersive equations, Universitext, Springer-Verlag, Berlin, 2009. Zbl1178.35004MR2492151
- E. Madelung, Quantumtheorie in Hydrodynamische form, Zts. f. Phys. 40 (1926), 322–326. Zbl52.0969.06
- Y. Martel, Linear problems related to asymptotic stability of solitons of the generalized KdV equations, SIAM J. Math. Anal. 38 (2006), no. 3, 759–781. Zbl1126.35055MR2262941
- Y. Martel and F. Merle, Asymptotic stability of solitons for subcritical generalized KdV equations, Arch. Ration. Mech. Anal. 157 (2001), no. 3, 219–254. Zbl0981.35073MR1826966
- —, Asymptotic stability of solitons of the subcritical gKdV equations revisited, Nonlinearity 18 (2005), no. 1, 55–80. Zbl1064.35171MR2109467
- —, Asymptotic stability of solitons of the gKdV equations with general nonlinearity, Math. Ann. 341 (2008), no. 2, 391–427. Zbl1153.35068MR2385662
- —, Refined asymptotics around solitons for the gKdV equations with a general nonlinearity, Disc. Cont. Dynam. Syst. 20 (2008), no. 2, 177–218. Zbl1137.35062MR2358258
- Y. Martel, F. Merle, and T.-P. Tsai, Stability and asymptotic stability in the energy space of the sum of solitons for subcritical gKdV equations, Commun. Math. Phys. 231 (2002), no. 2, 347–373. Zbl1017.35098MR1946336
- —, Stability in of the sum of solitary waves for some nonlinear Schrödinger equations, Duke Math. J. 133 (2006), no. 3, 405–466. MR2228459
- A. Nahmod, J. Shatah, L. Vega, and C. Zeng, Schrödinger maps and their associated frame systems, Int. Math. Res. Not. 2007 (2007), 1–29. Zbl1142.35087
- N. Papanicolaou and P.N. Spathis, Semitopological solitons in planar ferromagnets, Nonlinearity 12 (1999), no. 2, 285–302. Zbl0938.35183MR1677795
- L.P. Pitaevskii, Vortex lines in an imperfect Bose gas, Sov. Phys. JETP 13 (1961), no. 2, 451–454.
- E.K. Sklyanin, On complete integrability of the Landau-Lifshitz equation, Tech. Report E-3-79, Leningrad Department of Steklov Institute of Mathematics of the USSR Academy of Sciences, 1979. Zbl0449.35089
- P.-L. Sulem, C. Sulem, and C. Bardos, On the continuous limit for a system of classical spins, Commun. Math. Phys. 107 (1986), no. 3, 431–454. Zbl0614.35087MR866199
- M.I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal. 16 (1985), no. 3, 472–491. Zbl0583.35028MR783974
- V.E. Zakharov and A.B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP 34 (1972), 62–69. MR406174
- Y.L. Zhou and B.L. Guo, Existence of weak solution for boundary problems of systems of ferro-magnetic chain, Sci. China Ser. A 27 (1984), no. 8, 799–811. Zbl0571.35058MR795163
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.