Stabilité des solitons de l’équation de Landau-Lifshitz à anisotropie planaire

André de Laire[1]; Philippe Gravejat[2]

  • [1] Laboratoire Paul Painlevé Université Lille 1 59655 Villeneuve d’Ascq Cedex France
  • [2] Centre de Mathématiques Laurent Schwartz École polytechnique 91128 Palaiseau Cedex France

Séminaire Laurent Schwartz — EDP et applications (2014-2015)

  • Volume: 258, Issue: 1, page 1-27
  • ISSN: 2266-0607

Abstract

top
Cet exposé présente plusieurs résultats récents quant à la stabilité des solitons sombres de l’équation de Landau-Lifshitz à anisotropie planaire, en particulier, quant à la stabilité orbitale des trains (bien préparés) de solitons gris [16] et à la stabilité asymptotique de ces mêmes solitons [2].

How to cite

top

de Laire, André, and Gravejat, Philippe. "Stabilité des solitons de l’équation de Landau-Lifshitz à anisotropie planaire." Séminaire Laurent Schwartz — EDP et applications 258.1 (2014-2015): 1-27. <http://eudml.org/doc/275726>.

@article{deLaire2014-2015,
abstract = {Cet exposé présente plusieurs résultats récents quant à la stabilité des solitons sombres de l’équation de Landau-Lifshitz à anisotropie planaire, en particulier, quant à la stabilité orbitale des trains (bien préparés) de solitons gris [16] et à la stabilité asymptotique de ces mêmes solitons [2].},
affiliation = {Laboratoire Paul Painlevé Université Lille 1 59655 Villeneuve d’Ascq Cedex France; Centre de Mathématiques Laurent Schwartz École polytechnique 91128 Palaiseau Cedex France},
author = {de Laire, André, Gravejat, Philippe},
journal = {Séminaire Laurent Schwartz — EDP et applications},
keywords = {orbital stability; solitons; Landau-Lifshitz equation},
language = {fre},
number = {1},
pages = {1-27},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Stabilité des solitons de l’équation de Landau-Lifshitz à anisotropie planaire},
url = {http://eudml.org/doc/275726},
volume = {258},
year = {2014-2015},
}

TY - JOUR
AU - de Laire, André
AU - Gravejat, Philippe
TI - Stabilité des solitons de l’équation de Landau-Lifshitz à anisotropie planaire
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2014-2015
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 258
IS - 1
SP - 1
EP - 27
AB - Cet exposé présente plusieurs résultats récents quant à la stabilité des solitons sombres de l’équation de Landau-Lifshitz à anisotropie planaire, en particulier, quant à la stabilité orbitale des trains (bien préparés) de solitons gris [16] et à la stabilité asymptotique de ces mêmes solitons [2].
LA - fre
KW - orbital stability; solitons; Landau-Lifshitz equation
UR - http://eudml.org/doc/275726
ER -

References

top
  1. Z.S. Agranovich and V.A. Marchenko, The inverse problem of scattering theory, Gordon and Breach Science Publishers, New York, 1963, Translated from the Russian by B.D. Seckler. Zbl0117.06003MR162497
  2. Y. Bahri, Asymptotic stability in the energy space for dark solitons of the Landau-Lifshitz equation, Preprint (2015). 
  3. I. Bejenaru, A.D. Ionescu, C.E. Kenig, and D. Tataru, Global Schrödinger maps in dimensions d 2  : Small data in the critical Sobolev spaces, Annals of Math. 173 (2011), no. 3, 1443–1506. Zbl1233.35112MR2800718
  4. F. Béthuel, P. Gravejat, and J.-C. Saut, Existence and properties of travelling waves for the Gross-Pitaevskii equation, Stationary and time dependent Gross-Pitaevskii equations (A. Farina and J.-C. Saut, eds.), Contemp. Math., vol. 473, Amer. Math. Soc., Providence, RI, 2008, pp. 55–104. Zbl1216.35132MR2522014
  5. —, On the KP-I transonic limit of two-dimensional Gross-Pitaevskii travelling waves, Dynamics of PDE 5 (2008), no. 3, 241–280. Zbl1186.35199MR2455894
  6. F. Béthuel, P. Gravejat, J.-C. Saut, and D. Smets, Orbital stability of the black soliton for the Gross-Pitaevskii equation, Indiana Univ. Math. J 57 (2008), no. 6, 2611–2642. Zbl1171.35012MR2482993
  7. F. Béthuel, P. Gravejat, and D. Smets, Stability in the energy space for chains of solitons of the one-dimensional Gross-Pitaevskii equation, Ann. Inst. Fourier 64 (2014), no. 1. Zbl1337.35131MR3330540
  8. —, Asymptotic stability in the energy space for dark solitons of the Gross-Pitaevskii equation, Ann. Sci. Éc. Norm. Sup. in press (2015), http://hal.archives-ouvertes.fr/hal-00767588v2. Zbl06543145
  9. R.F. Bikbaev, A.I. Bobenko, and A.R. Its, Landau-Lifshitz equation, uniaxial anisotropy case : Theory of exact solutions, Theoret. and Math. Phys. 178 (2014), no. 2, 143–193. Zbl1303.82038MR3301512
  10. T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10, Amer. Math. Soc., Providence, 2003. Zbl1055.35003MR2002047
  11. T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Commun. Math. Phys. 85 (1982), no. 4, 549–561. Zbl0513.35007MR677997
  12. N.-H. Chang, J. Shatah, and K. Uhlenbeck, Schrödinger maps, Commun. Pure Appl. Math. 53 (2000), no. 5, 590–602. Zbl1028.35134MR1737504
  13. D. Chiron and M. Maris, Rarefaction pulses for the nonlinear Schrödinger equation in the transonic limit, Commun. Math. Phys. 326 (2014), no. 2, 329–392. Zbl1292.35274MR3165458
  14. S. Cuccagna and R. Jenkins, On asymptotic stability of N-solitons of the Gross-Pitaevskii equation, Preprint (2014), http://arxiv.org/abs/1410.6887. MR3180733
  15. A. de Laire, Minimal energy for the traveling waves of the Landau-Lifshitz equation, SIAM J. Math. Anal. 46 (2014), no. 1, 96–132. Zbl1305.35123MR3148081
  16. A. de Laire and P. Gravejat, Stability in the energy space for chains of solitons of the Landau-Lifshitz equation, J. Differential Equations 258 (2015), no. 1, 1–80. Zbl1301.35173MR3271297
  17. K. El Dika, Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation, Disc. Cont. Dynam. Syst. 13 (2005), no. 3, 583–622. Zbl1083.35019MR2152333
  18. W. Ding and Y. Wang, Schrödinger flow of maps into symplectic manifolds, Sci. China Ser. A 41 (1998), no. 7, 746–755. Zbl0918.53017MR1633799
  19. L.D. Faddeev and L.A. Takhtajan, Hamiltonian methods in the theory of solitons, Classics in Mathematics, Springer-Verlag, Berlin, 2007, Translated by A.G. Reyman. Zbl1111.37001MR2348643
  20. I.M. Gel’fand and B.M. Levitan, On the determination of a differential equation from its spectral function, Izvestiya Akad. Nauk. SSSR Ser. Mat. 15 (1951), 309–360. Zbl0044.09301MR45281
  21. P. Gérard, The Gross-Pitaevskii equation in the energy space, Stationary and time dependent Gross-Pitaevskii equations (A. Farina and J.-C. Saut, eds.), Contemp. Math., vol. 473, Amer. Math. Soc., Providence, RI, 2008, pp. 129–148. Zbl1166.35373MR2522016
  22. P. Gérard and Z. Zhang, Orbital stability of traveling waves for the one-dimensional Gross-Pitaevskii equation, J. Math. Pures Appl. 91 (2009), no. 2, 178–210. Zbl1232.35152MR2498754
  23. P. Gravejat, Quelques contributions à l’analyse mathématique de l’équation de Gross-Pitaevskii et du modèle de Bogoliubov-Dirac-Fock, Habilitation thesis, Université Paris Dauphine, December 2011. 
  24. P. Gravejat and D. Smets, Asymptotic stability of the black soliton for the Gross-Pitaevskii equation, Preprint (2014), http://hal.archives-ouvertes.fr/hal-01002094v1. Zbl1326.35346
  25. M. Grillakis, J. Shatah, and W.A. Strauss, Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal. 74 (1987), no. 1, 160–197. Zbl0656.35122MR901236
  26. E.P. Gross, Hydrodynamics of a superfluid condensate, J. Math. Phys. 4 (1963), no. 2, 195–207. 
  27. B. Guo and S. Ding, Landau-Lifshitz equations, Frontiers of Research with the Chinese Academy of Sciences, vol. 1, World Scientific, Hackensack, 2008. Zbl1158.35096MR2432099
  28. R. Jerrard and D. Smets, On Schrödinger maps from 𝕋 1 to 𝕊 2 , Ann. Sci. Éc. Norm. Sup. 45 (2012), no. 4, 635–678. MR3059243
  29. C.A. Jones, S.J. Putterman, and P.H. Roberts, Motions in a Bose condensate V. Stability of solitary wave solutions of nonlinear Schrödinger equations in two and three dimensions, J. Phys. A, Math. Gen. 19 (1986), 2991–3011. 
  30. C.A. Jones and P.H. Roberts, Motions in a Bose condensate IV. Axisymmetric solitary waves, J. Phys. A, Math. Gen. 15 (1982), 2599–2619. 
  31. B.B. Kadomtsev and V.I. Petviashvili, On the stability of solitary waves in weakly dispersing media, Sov. Phys. Dokl. 15 (1970), no. 6, 539–541. Zbl0217.25004
  32. C.E. Kenig and Y. Martel, Asymptotic stability of solitons for the Benjamin-Ono equation, Rev. Mat. Iberoamericana 25 (2009), no. 3, 909–970. Zbl1247.35133MR2590690
  33. C.E. Kenig, G. Ponce, and L. Vega, On unique continuation for nonlinear Schrödinger equations, Commun. Pure Appl. Math. 56 (2003), no. 9, 1247–1262. Zbl1041.35072MR1980854
  34. Y.S. Kivshar and B. Luther-Davies, Dark optical solitons : physics and applications, Phys. Rep. 298 (1998), no. 2-3, 81–197. 
  35. L.D. Landau and E.M. Lifshitz, On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, Phys. Zeitsch. der Sow. 8 (1935), 153–169. Zbl0012.28501
  36. P.D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure Appl. Math. 21 (1968), no. 5, 467–490. Zbl0162.41103MR235310
  37. F. Lin and J. Wei, Traveling wave solutions of the Schrödinger map equation, Commun. Pure Appl. Math. 63 (2010), no. 12, 1585–1621. Zbl1206.35062MR2742008
  38. F. Linares and G. Ponce, Introduction to nonlinear dispersive equations, Universitext, Springer-Verlag, Berlin, 2009. Zbl1178.35004MR2492151
  39. E. Madelung, Quantumtheorie in Hydrodynamische form, Zts. f. Phys. 40 (1926), 322–326. Zbl52.0969.06
  40. Y. Martel, Linear problems related to asymptotic stability of solitons of the generalized KdV equations, SIAM J. Math. Anal. 38 (2006), no. 3, 759–781. Zbl1126.35055MR2262941
  41. Y. Martel and F. Merle, Asymptotic stability of solitons for subcritical generalized KdV equations, Arch. Ration. Mech. Anal. 157 (2001), no. 3, 219–254. Zbl0981.35073MR1826966
  42. —, Asymptotic stability of solitons of the subcritical gKdV equations revisited, Nonlinearity 18 (2005), no. 1, 55–80. Zbl1064.35171MR2109467
  43. —, Asymptotic stability of solitons of the gKdV equations with general nonlinearity, Math. Ann. 341 (2008), no. 2, 391–427. Zbl1153.35068MR2385662
  44. —, Refined asymptotics around solitons for the gKdV equations with a general nonlinearity, Disc. Cont. Dynam. Syst. 20 (2008), no. 2, 177–218. Zbl1137.35062MR2358258
  45. Y. Martel, F. Merle, and T.-P. Tsai, Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations, Commun. Math. Phys. 231 (2002), no. 2, 347–373. Zbl1017.35098MR1946336
  46. —, Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations, Duke Math. J. 133 (2006), no. 3, 405–466. MR2228459
  47. A. Nahmod, J. Shatah, L. Vega, and C. Zeng, Schrödinger maps and their associated frame systems, Int. Math. Res. Not. 2007 (2007), 1–29. Zbl1142.35087
  48. N. Papanicolaou and P.N. Spathis, Semitopological solitons in planar ferromagnets, Nonlinearity 12 (1999), no. 2, 285–302. Zbl0938.35183MR1677795
  49. L.P. Pitaevskii, Vortex lines in an imperfect Bose gas, Sov. Phys. JETP 13 (1961), no. 2, 451–454. 
  50. E.K. Sklyanin, On complete integrability of the Landau-Lifshitz equation, Tech. Report E-3-79, Leningrad Department of Steklov Institute of Mathematics of the USSR Academy of Sciences, 1979. Zbl0449.35089
  51. P.-L. Sulem, C. Sulem, and C. Bardos, On the continuous limit for a system of classical spins, Commun. Math. Phys. 107 (1986), no. 3, 431–454. Zbl0614.35087MR866199
  52. M.I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal. 16 (1985), no. 3, 472–491. Zbl0583.35028MR783974
  53. V.E. Zakharov and A.B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP 34 (1972), 62–69. MR406174
  54. Y.L. Zhou and B.L. Guo, Existence of weak solution for boundary problems of systems of ferro-magnetic chain, Sci. China Ser. A 27 (1984), no. 8, 799–811. Zbl0571.35058MR795163

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.