Monotone Hurwitz Numbers and the HCIZ Integral

I. P. Goulden[1]; Mathieu Guay-Paquet[2]; Jonathan Novak[3]

  • [1] Department of Combinatorics & Optimization University of Waterloo 200 University Avenue West Waterloo, ON N2L 3G1 Canada
  • [2] LaCIM Université du Québec à Montréal 201 Avenue du Président-Kennedy Montréal, QC H2X 3Y7 Canada
  • [3] Department of Mathematics Massachusetts Institute of Technology 77 Massachusetts Ave. Boston, MA 02114 USA

Annales mathématiques Blaise Pascal (2014)

  • Volume: 21, Issue: 1, page 71-89
  • ISSN: 1259-1734

Abstract

top
In this article, we prove that the complex convergence of the HCIZ free energy is equivalent to the non-vanishing of the HCIZ integral in a neighbourhood of z = 0 . Our approach is based on a combinatorial model for the Maclaurin coefficients of the HCIZ integral together with classical complex-analytic techniques.

How to cite

top

Goulden, I. P., Guay-Paquet, Mathieu, and Novak, Jonathan. "Monotone Hurwitz Numbers and the HCIZ Integral." Annales mathématiques Blaise Pascal 21.1 (2014): 71-89. <http://eudml.org/doc/275580>.

@article{Goulden2014,
abstract = {In this article, we prove that the complex convergence of the HCIZ free energy is equivalent to the non-vanishing of the HCIZ integral in a neighbourhood of $z=0$. Our approach is based on a combinatorial model for the Maclaurin coefficients of the HCIZ integral together with classical complex-analytic techniques.},
affiliation = {Department of Combinatorics & Optimization University of Waterloo 200 University Avenue West Waterloo, ON N2L 3G1 Canada; LaCIM Université du Québec à Montréal 201 Avenue du Président-Kennedy Montréal, QC H2X 3Y7 Canada; Department of Mathematics Massachusetts Institute of Technology 77 Massachusetts Ave. Boston, MA 02114 USA},
author = {Goulden, I. P., Guay-Paquet, Mathieu, Novak, Jonathan},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Matrix models; Hurwitz numbers; asymptotic analysis; matrix models},
language = {eng},
month = {1},
number = {1},
pages = {71-89},
publisher = {Annales mathématiques Blaise Pascal},
title = {Monotone Hurwitz Numbers and the HCIZ Integral},
url = {http://eudml.org/doc/275580},
volume = {21},
year = {2014},
}

TY - JOUR
AU - Goulden, I. P.
AU - Guay-Paquet, Mathieu
AU - Novak, Jonathan
TI - Monotone Hurwitz Numbers and the HCIZ Integral
JO - Annales mathématiques Blaise Pascal
DA - 2014/1//
PB - Annales mathématiques Blaise Pascal
VL - 21
IS - 1
SP - 71
EP - 89
AB - In this article, we prove that the complex convergence of the HCIZ free energy is equivalent to the non-vanishing of the HCIZ integral in a neighbourhood of $z=0$. Our approach is based on a combinatorial model for the Maclaurin coefficients of the HCIZ integral together with classical complex-analytic techniques.
LA - eng
KW - Matrix models; Hurwitz numbers; asymptotic analysis; matrix models
UR - http://eudml.org/doc/275580
ER -

References

top
  1. Benoît Collins, Moments and cumulants of polynomial random variables on unitary groups, the Itzykson-Zuber integral, and free probability, Int. Math. Res. Not. 2003 (2003), 953-982 Zbl1049.60091MR1959915
  2. Benoît Collins, Alice Guionnet, Edouard Maurel-Segala, Asymptotics of unitary and orthogonal matrix integrals, Adv. Math. 222 (2009), 172-215 Zbl1184.15024MR2531371
  3. Benoît Collins, Piotr Śniady, Integration with respect to the Haar measure on unitary, orthogonal and symplectic group, Comm. Math. Phys. 264 (2006), 773-795 Zbl1108.60004MR2217291
  4. Torsten Ekedahl, Sergei Lando, Michael Shapiro, Alek Vainshtein, Hurwitz numbers and intersections on moduli spaces of curves, Invent. Math. 146 (2001), 297-327 Zbl1073.14041MR1864018
  5. László Erdős, Horng-Tzer Yau, Universality of local spectral statistics of random matrices, Bull. Amer. Math. Soc. (N.S.) 49 (2012), 377-414 Zbl1263.15032MR2917064
  6. I. P. Goulden, Mathieu Guay-Paquet, Jonathan Novak, Toda equations and piecewise polynomiality for mixed double Hurwitz numbers Zbl1336.05003
  7. I. P. Goulden, Mathieu Guay-Paquet, Jonathan Novak, Monotone Hurwitz numbers in genus zero, Canad. J. Math. 65 (2013), 1020-1042 Zbl1280.05008MR3095005
  8. I. P. Goulden, Mathieu Guay-Paquet, Jonathan Novak, Polynomiality of monotone Hurwitz numbers in higher genera, Adv. Math. 238 (2013), 1-23 Zbl1285.05008MR3033628
  9. Ian P. Goulden, David M. Jackson, Combinatorial enumeration, (2004), Dover Publications Inc., Mineola, NY Zbl1099.05005MR2079788
  10. Mathieu Guay-Paquet, Jonathan Novak, A self-interacting random walk on the symmetric group Zbl1296.05202
  11. Alice Guionnet, Large deviations and stochastic calculus for large random matrices, Probab. Surv. 1 (2004), 72-172 Zbl1189.60059MR2095566
  12. A. Hurwitz, Ueber Riemann’sche Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 39 (1891), 1-60 MR1510692
  13. C. Itzykson, J. B. Zuber, The planar approximation. II, J. Math. Phys. 21 (1980), 411-421 Zbl0997.81549MR562985
  14. M. E. Kazarian, S. K. Lando, An algebro-geometric proof of Witten’s conjecture, J. Amer. Math. Soc. 20 (2007), 1079-1089 Zbl1155.14004MR2328716
  15. Sho Matsumoto, Jonathan Novak, Jucys-Murphy elements and unitary matrix integrals, Int. Math. Res. Not. IMRN 2013 (2013), 362-397 Zbl1312.05143MR3010693
  16. Jonathan I. Novak, Jucys-Murphy elements and the unitary Weingarten function, Noncommutative harmonic analysis with applications to probability II 89 (2010), 231-235, Polish Acad. Sci. Inst. Math., Warsaw Zbl1219.05196MR2730867
  17. Andrei Okounkov, Toda equations for Hurwitz numbers, Math. Res. Lett. 7 (2000), 447-453 Zbl0969.37033MR1783622
  18. R. Pandharipande, The Toda equations and the Gromov-Witten theory of the Riemann sphere, Lett. Math. Phys. 53 (2000), 59-74 Zbl0999.14020MR1799843
  19. L. Pyber, Enumerating finite groups of given order, Ann. of Math. (2) 137 (1993), 203-220 Zbl0778.20012MR1200081
  20. E. C. Titchmarsh, The Theory of Functions, (1939), Oxford University Press Zbl0022.14602MR3155290
  21. P. Zinn-Justin, HCIZ integral and 2D Toda lattice hierarchy, Nuclear Phys. B 634 (2002), 417-432 Zbl0995.81030MR1912027
  22. P. Zinn-Justin, J.-B. Zuber, On some integrals over the U ( N ) unitary group and their large N limit, J. Phys. A 36 (2003), 3173-3193 Zbl1074.82013MR1986413

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.