Monotone Hurwitz Numbers and the HCIZ Integral
I. P. Goulden[1]; Mathieu Guay-Paquet[2]; Jonathan Novak[3]
- [1] Department of Combinatorics & Optimization University of Waterloo 200 University Avenue West Waterloo, ON N2L 3G1 Canada
- [2] LaCIM Université du Québec à Montréal 201 Avenue du Président-Kennedy Montréal, QC H2X 3Y7 Canada
- [3] Department of Mathematics Massachusetts Institute of Technology 77 Massachusetts Ave. Boston, MA 02114 USA
Annales mathématiques Blaise Pascal (2014)
- Volume: 21, Issue: 1, page 71-89
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topGoulden, I. P., Guay-Paquet, Mathieu, and Novak, Jonathan. "Monotone Hurwitz Numbers and the HCIZ Integral." Annales mathématiques Blaise Pascal 21.1 (2014): 71-89. <http://eudml.org/doc/275580>.
@article{Goulden2014,
abstract = {In this article, we prove that the complex convergence of the HCIZ free energy is equivalent to the non-vanishing of the HCIZ integral in a neighbourhood of $z=0$. Our approach is based on a combinatorial model for the Maclaurin coefficients of the HCIZ integral together with classical complex-analytic techniques.},
affiliation = {Department of Combinatorics & Optimization University of Waterloo 200 University Avenue West Waterloo, ON N2L 3G1 Canada; LaCIM Université du Québec à Montréal 201 Avenue du Président-Kennedy Montréal, QC H2X 3Y7 Canada; Department of Mathematics Massachusetts Institute of Technology 77 Massachusetts Ave. Boston, MA 02114 USA},
author = {Goulden, I. P., Guay-Paquet, Mathieu, Novak, Jonathan},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Matrix models; Hurwitz numbers; asymptotic analysis; matrix models},
language = {eng},
month = {1},
number = {1},
pages = {71-89},
publisher = {Annales mathématiques Blaise Pascal},
title = {Monotone Hurwitz Numbers and the HCIZ Integral},
url = {http://eudml.org/doc/275580},
volume = {21},
year = {2014},
}
TY - JOUR
AU - Goulden, I. P.
AU - Guay-Paquet, Mathieu
AU - Novak, Jonathan
TI - Monotone Hurwitz Numbers and the HCIZ Integral
JO - Annales mathématiques Blaise Pascal
DA - 2014/1//
PB - Annales mathématiques Blaise Pascal
VL - 21
IS - 1
SP - 71
EP - 89
AB - In this article, we prove that the complex convergence of the HCIZ free energy is equivalent to the non-vanishing of the HCIZ integral in a neighbourhood of $z=0$. Our approach is based on a combinatorial model for the Maclaurin coefficients of the HCIZ integral together with classical complex-analytic techniques.
LA - eng
KW - Matrix models; Hurwitz numbers; asymptotic analysis; matrix models
UR - http://eudml.org/doc/275580
ER -
References
top- Benoît Collins, Moments and cumulants of polynomial random variables on unitary groups, the Itzykson-Zuber integral, and free probability, Int. Math. Res. Not. 2003 (2003), 953-982 Zbl1049.60091MR1959915
- Benoît Collins, Alice Guionnet, Edouard Maurel-Segala, Asymptotics of unitary and orthogonal matrix integrals, Adv. Math. 222 (2009), 172-215 Zbl1184.15024MR2531371
- Benoît Collins, Piotr Śniady, Integration with respect to the Haar measure on unitary, orthogonal and symplectic group, Comm. Math. Phys. 264 (2006), 773-795 Zbl1108.60004MR2217291
- Torsten Ekedahl, Sergei Lando, Michael Shapiro, Alek Vainshtein, Hurwitz numbers and intersections on moduli spaces of curves, Invent. Math. 146 (2001), 297-327 Zbl1073.14041MR1864018
- László Erdős, Horng-Tzer Yau, Universality of local spectral statistics of random matrices, Bull. Amer. Math. Soc. (N.S.) 49 (2012), 377-414 Zbl1263.15032MR2917064
- I. P. Goulden, Mathieu Guay-Paquet, Jonathan Novak, Toda equations and piecewise polynomiality for mixed double Hurwitz numbers Zbl1336.05003
- I. P. Goulden, Mathieu Guay-Paquet, Jonathan Novak, Monotone Hurwitz numbers in genus zero, Canad. J. Math. 65 (2013), 1020-1042 Zbl1280.05008MR3095005
- I. P. Goulden, Mathieu Guay-Paquet, Jonathan Novak, Polynomiality of monotone Hurwitz numbers in higher genera, Adv. Math. 238 (2013), 1-23 Zbl1285.05008MR3033628
- Ian P. Goulden, David M. Jackson, Combinatorial enumeration, (2004), Dover Publications Inc., Mineola, NY Zbl1099.05005MR2079788
- Mathieu Guay-Paquet, Jonathan Novak, A self-interacting random walk on the symmetric group Zbl1296.05202
- Alice Guionnet, Large deviations and stochastic calculus for large random matrices, Probab. Surv. 1 (2004), 72-172 Zbl1189.60059MR2095566
- A. Hurwitz, Ueber Riemann’sche Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 39 (1891), 1-60 MR1510692
- C. Itzykson, J. B. Zuber, The planar approximation. II, J. Math. Phys. 21 (1980), 411-421 Zbl0997.81549MR562985
- M. E. Kazarian, S. K. Lando, An algebro-geometric proof of Witten’s conjecture, J. Amer. Math. Soc. 20 (2007), 1079-1089 Zbl1155.14004MR2328716
- Sho Matsumoto, Jonathan Novak, Jucys-Murphy elements and unitary matrix integrals, Int. Math. Res. Not. IMRN 2013 (2013), 362-397 Zbl1312.05143MR3010693
- Jonathan I. Novak, Jucys-Murphy elements and the unitary Weingarten function, Noncommutative harmonic analysis with applications to probability II 89 (2010), 231-235, Polish Acad. Sci. Inst. Math., Warsaw Zbl1219.05196MR2730867
- Andrei Okounkov, Toda equations for Hurwitz numbers, Math. Res. Lett. 7 (2000), 447-453 Zbl0969.37033MR1783622
- R. Pandharipande, The Toda equations and the Gromov-Witten theory of the Riemann sphere, Lett. Math. Phys. 53 (2000), 59-74 Zbl0999.14020MR1799843
- L. Pyber, Enumerating finite groups of given order, Ann. of Math. (2) 137 (1993), 203-220 Zbl0778.20012MR1200081
- E. C. Titchmarsh, The Theory of Functions, (1939), Oxford University Press Zbl0022.14602MR3155290
- P. Zinn-Justin, HCIZ integral and 2D Toda lattice hierarchy, Nuclear Phys. B 634 (2002), 417-432 Zbl0995.81030MR1912027
- P. Zinn-Justin, J.-B. Zuber, On some integrals over the unitary group and their large limit, J. Phys. A 36 (2003), 3173-3193 Zbl1074.82013MR1986413
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.