On the geometry of polynomial mappings at infinity
Anna Valette[1]; Guillaume Valette[2]
- [1] Instytut Matematyki Uniwersytetu Jagiellońskiego, ul. S Łojasiewicza, Kraków, Poland
- [2] Instytut Matematyczny PAN, ul. Św. Tomasza 30, 31-027 Kraków, Poland
Annales de l’institut Fourier (2014)
- Volume: 64, Issue: 5, page 2147-2163
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topValette, Anna, and Valette, Guillaume. "On the geometry of polynomial mappings at infinity." Annales de l’institut Fourier 64.5 (2014): 2147-2163. <http://eudml.org/doc/275593>.
@article{Valette2014,
abstract = {We associate to a given polynomial map from $\mathbb\{C\}^2$ to itself with nonvanishing Jacobian a variety whose homology or intersection homology describes the geometry of singularities at infinity of this map.},
affiliation = {Instytut Matematyki Uniwersytetu Jagiellońskiego, ul. S Łojasiewicza, Kraków, Poland; Instytut Matematyczny PAN, ul. Św. Tomasza 30, 31-027 Kraków, Poland},
author = {Valette, Anna, Valette, Guillaume},
journal = {Annales de l’institut Fourier},
keywords = {complex polynomial mappings; singularities at infinity; asymptotical values; intersection homology; Jacobian conjecture},
language = {eng},
number = {5},
pages = {2147-2163},
publisher = {Association des Annales de l’institut Fourier},
title = {On the geometry of polynomial mappings at infinity},
url = {http://eudml.org/doc/275593},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Valette, Anna
AU - Valette, Guillaume
TI - On the geometry of polynomial mappings at infinity
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 5
SP - 2147
EP - 2163
AB - We associate to a given polynomial map from $\mathbb{C}^2$ to itself with nonvanishing Jacobian a variety whose homology or intersection homology describes the geometry of singularities at infinity of this map.
LA - eng
KW - complex polynomial mappings; singularities at infinity; asymptotical values; intersection homology; Jacobian conjecture
UR - http://eudml.org/doc/275593
ER -
References
top- J. Bochnak, Coste M., M.-F. Roy, Géométrie algébrique réelle, (1987), Springer Zbl0633.14016MR949442
- M. Goresky, R. MacPherson, Intersection homology theory, Topology 19 (1980), 135-162 Zbl0448.55004MR572580
- M. Goresky, R. MacPherson, Intersection homology. II, Invent. Math. 72 (1983), 77-129 Zbl0529.55007MR696691
- R. Hardt, Semi-algebraic local-triviality in semi-algebraic mappings, Amer. J. Math. 102 (1980), 291-302 Zbl0465.14012MR564475
- Z. Jelonek, The set of point at which polynomial map is not proper, Ann. Polon. Math. 58 (1993), 259-266 Zbl0806.14009MR1244397
- Z. Jelonek, Testing sets for properness of polynomial mappings, Math. Ann. 315 (1999), 1-35 Zbl0946.14039MR1717542
- Z. Jelonek, Geometry of real polynomial mappings, Math. Z. 239 (2002), 321-333 Zbl0997.14017MR1888227
- O. H. Keller, Ganze Cremonatransformationen Monatschr, Math. Phys. 47 (1939), 229-306 Zbl0021.15303
- F. Kirwan, J. Woolf, An Introduction to Intersection Homology Theory, (2006), Chapman & Hall/CRC Zbl1106.55001MR2207421
- T. Mostowski, Some properties of the ring of Nash functions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), 245-266 Zbl0335.14001MR412180
- G. Valette, homology is an intersection homology, Adv. in Math. 231 (2012), 1818-1842 Zbl1258.14024MR2964625
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.