On the geometry of polynomial mappings at infinity

Anna Valette[1]; Guillaume Valette[2]

  • [1] Instytut Matematyki Uniwersytetu Jagiellońskiego, ul. S Łojasiewicza, Kraków, Poland
  • [2] Instytut Matematyczny PAN, ul. Św. Tomasza 30, 31-027 Kraków, Poland

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 5, page 2147-2163
  • ISSN: 0373-0956

Abstract

top
We associate to a given polynomial map from 2 to itself with nonvanishing Jacobian a variety whose homology or intersection homology describes the geometry of singularities at infinity of this map.

How to cite

top

Valette, Anna, and Valette, Guillaume. "On the geometry of polynomial mappings at infinity." Annales de l’institut Fourier 64.5 (2014): 2147-2163. <http://eudml.org/doc/275593>.

@article{Valette2014,
abstract = {We associate to a given polynomial map from $\mathbb\{C\}^2$ to itself with nonvanishing Jacobian a variety whose homology or intersection homology describes the geometry of singularities at infinity of this map.},
affiliation = {Instytut Matematyki Uniwersytetu Jagiellońskiego, ul. S Łojasiewicza, Kraków, Poland; Instytut Matematyczny PAN, ul. Św. Tomasza 30, 31-027 Kraków, Poland},
author = {Valette, Anna, Valette, Guillaume},
journal = {Annales de l’institut Fourier},
keywords = {complex polynomial mappings; singularities at infinity; asymptotical values; intersection homology; Jacobian conjecture},
language = {eng},
number = {5},
pages = {2147-2163},
publisher = {Association des Annales de l’institut Fourier},
title = {On the geometry of polynomial mappings at infinity},
url = {http://eudml.org/doc/275593},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Valette, Anna
AU - Valette, Guillaume
TI - On the geometry of polynomial mappings at infinity
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 5
SP - 2147
EP - 2163
AB - We associate to a given polynomial map from $\mathbb{C}^2$ to itself with nonvanishing Jacobian a variety whose homology or intersection homology describes the geometry of singularities at infinity of this map.
LA - eng
KW - complex polynomial mappings; singularities at infinity; asymptotical values; intersection homology; Jacobian conjecture
UR - http://eudml.org/doc/275593
ER -

References

top
  1. J. Bochnak, Coste M., M.-F. Roy, Géométrie algébrique réelle, (1987), Springer Zbl0633.14016MR949442
  2. M. Goresky, R. MacPherson, Intersection homology theory, Topology 19 (1980), 135-162 Zbl0448.55004MR572580
  3. M. Goresky, R. MacPherson, Intersection homology. II, Invent. Math. 72 (1983), 77-129 Zbl0529.55007MR696691
  4. R. Hardt, Semi-algebraic local-triviality in semi-algebraic mappings, Amer. J. Math. 102 (1980), 291-302 Zbl0465.14012MR564475
  5. Z. Jelonek, The set of point at which polynomial map is not proper, Ann. Polon. Math. 58 (1993), 259-266 Zbl0806.14009MR1244397
  6. Z. Jelonek, Testing sets for properness of polynomial mappings, Math. Ann. 315 (1999), 1-35 Zbl0946.14039MR1717542
  7. Z. Jelonek, Geometry of real polynomial mappings, Math. Z. 239 (2002), 321-333 Zbl0997.14017MR1888227
  8. O. H. Keller, Ganze Cremonatransformationen Monatschr, Math. Phys. 47 (1939), 229-306 Zbl0021.15303
  9. F. Kirwan, J. Woolf, An Introduction to Intersection Homology Theory, (2006), Chapman & Hall/CRC Zbl1106.55001MR2207421
  10. T. Mostowski, Some properties of the ring of Nash functions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), 245-266 Zbl0335.14001MR412180
  11. G. Valette, L homology is an intersection homology, Adv. in Math. 231 (2012), 1818-1842 Zbl1258.14024MR2964625

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.