Finite Groups with some s -Permutably Embedded and Weakly s -Permutable Subgroups

Fenfang Xie[1]; Jinjin Wang[1]; Jiayi Xia[1]; Guo Zhong[1]

  • [1] School of Mathematical Sciences, Guangxi Teachers Education University, Nanning, Guangxi, 530023, P. R. China

Confluentes Mathematici (2013)

  • Volume: 5, Issue: 1, page 93-100
  • ISSN: 1793-7434

Abstract

top
Let G be a finite group, p the smallest prime dividing the order of G and P a Sylow p -subgroup of G with the smallest generator number d . There is a set d ( P ) = { P 1 , P 2 , , P d } of maximal subgroups of P such that i = 1 d P i = Φ ( P ) . In the present paper, we investigate the structure of a finite group under the assumption that every member of d ( P ) is either s -permutably embedded or weakly s -permutable in G to give criteria for a group to be p -supersolvable or p -nilpotent.

How to cite

top

Xie, Fenfang, et al. "Finite Groups with some $s$-Permutably Embedded and Weakly $s$-Permutable Subgroups." Confluentes Mathematici 5.1 (2013): 93-100. <http://eudml.org/doc/275595>.

@article{Xie2013,
abstract = {Let $G$ be a finite group, $p$ the smallest prime dividing the order of $G$ and $P$ a Sylow $p$-subgroup of $G$ with the smallest generator number $d$. There is a set $\mathcal\{M\}_d(P) = \lbrace P_1, P_2, \cdots , P_d\rbrace $ of maximal subgroups of $P$ such that $\bigcap ^d _\{i=1\}P_i=\Phi (P)$. In the present paper, we investigate the structure of a finite group under the assumption that every member of $\mathcal\{M\}_d(P)$ is either $s$-permutably embedded or weakly $s$-permutable in $G$ to give criteria for a group to be $p$-supersolvable or $p$-nilpotent.},
affiliation = {School of Mathematical Sciences, Guangxi Teachers Education University, Nanning, Guangxi, 530023, P. R. China; School of Mathematical Sciences, Guangxi Teachers Education University, Nanning, Guangxi, 530023, P. R. China; School of Mathematical Sciences, Guangxi Teachers Education University, Nanning, Guangxi, 530023, P. R. China; School of Mathematical Sciences, Guangxi Teachers Education University, Nanning, Guangxi, 530023, P. R. China},
author = {Xie, Fenfang, Wang, Jinjin, Xia, Jiayi, Zhong, Guo},
journal = {Confluentes Mathematici},
keywords = {weakly $s$-permutable subgoups; $s$-permutably embedded subgroups; $p$-nilpotent groups; finite groups; weakly -permutable subgoups; -permutably embedded subgroups; -nilpotent groups; maximal subgroups; Sylow subgroups; -nilpotency; -supersolvability},
language = {eng},
number = {1},
pages = {93-100},
publisher = {Institut Camille Jordan},
title = {Finite Groups with some $s$-Permutably Embedded and Weakly $s$-Permutable Subgroups},
url = {http://eudml.org/doc/275595},
volume = {5},
year = {2013},
}

TY - JOUR
AU - Xie, Fenfang
AU - Wang, Jinjin
AU - Xia, Jiayi
AU - Zhong, Guo
TI - Finite Groups with some $s$-Permutably Embedded and Weakly $s$-Permutable Subgroups
JO - Confluentes Mathematici
PY - 2013
PB - Institut Camille Jordan
VL - 5
IS - 1
SP - 93
EP - 100
AB - Let $G$ be a finite group, $p$ the smallest prime dividing the order of $G$ and $P$ a Sylow $p$-subgroup of $G$ with the smallest generator number $d$. There is a set $\mathcal{M}_d(P) = \lbrace P_1, P_2, \cdots , P_d\rbrace $ of maximal subgroups of $P$ such that $\bigcap ^d _{i=1}P_i=\Phi (P)$. In the present paper, we investigate the structure of a finite group under the assumption that every member of $\mathcal{M}_d(P)$ is either $s$-permutably embedded or weakly $s$-permutable in $G$ to give criteria for a group to be $p$-supersolvable or $p$-nilpotent.
LA - eng
KW - weakly $s$-permutable subgoups; $s$-permutably embedded subgroups; $p$-nilpotent groups; finite groups; weakly -permutable subgoups; -permutably embedded subgroups; -nilpotent groups; maximal subgroups; Sylow subgroups; -nilpotency; -supersolvability
UR - http://eudml.org/doc/275595
ER -

References

top
  1. K. Al-Sharo, On some maximal S -quasinormal subgroups of finite groups, Beiträge zur Algebra und Geometrie, 49:227–232, 2008. Zbl1144.20009MR2410577
  2. M. Asaad, A. A. Heliel, On S -quasinormal embedded subgroups of finite groups, J. Pure Appl. Algebra, 165:129–135, 2001. Zbl1011.20019MR1865961
  3. A. Ballester-Bolinches, M. C. Pedraza-Aguilera, Sufficient conditions for supersolubility of finite groups, J. Pure Appl. Algebra, 127:113–118, 1998. Zbl0928.20020MR1620696
  4. K. Doerk, Finite Soluble Groups, Berlin, Walterde Gruyter, 1992. Zbl0753.20001MR1169099
  5. W. E. Deskins, On quasinormal subgroups of finite groups, Mathematische Zeitschrift, 82:125–132, 1963. Zbl0114.02004MR153738
  6. D. Gorenstein, Finite group, Chelsea, New York, 1980. Zbl0463.20012
  7. B. Huppert, Endliche gruppen I, Springer, Berlin, 1967. Zbl0412.20002MR224703
  8. X. He, S. Li, X. Liu, On S -quasinormal and c -normal subgroups of prime power order in finite groups, Algebra Colloq., 18 (2011), 685–692. Zbl1241.20027MR2837005
  9. O. H. Kegel, Sylow-Gruppen und Subnormalteiler endlicher Gruppen, Math. Z., 78:205–221, 1962. Zbl0102.26802MR147527
  10. S. Li, X. He, On normally embedded subgroups of prime power order in finite groups, Comm. Algebra, 36:2333–2340, 2008. Zbl1146.20015MR2418390
  11. S. Li, Y. Li, On S -quasinormal and c -normal subgroups of a finite group, Czechoslovak Mathematical Journal 58:1083–1095, 2008. Zbl1166.20013MR2471167
  12. S. Li, Z. Shen, J. Liu, et al, The influence of S S -quasinormality of some subgroups on the structure of finite groups, J. Algebra, 319:4275–4287, 2008. Zbl1152.20019MR2407900
  13. D. H. Mclain, The existence of subgroups of given order in finite groups, Proc.Cambridge Philos.Soc, 53:278–285, 1957. Zbl0079.25403MR85260
  14. L. Miao, On weakly s -permutable subgroups of finite groups, Bull Braz. Math. Soc. New Series, 41:223–235, 2010. Zbl1221.20014MR2738912
  15. D. J. S. Robinson, A course in the Theory of groups, New York, Springer-Verlag, 1982. Zbl0836.20001MR648604
  16. Z. Shen, W. Shi, Q. Zhang, S -quasinormality of finite groups, Front. Math. China, 5:329–339, 2010. Zbl1200.20014MR2610728
  17. P. Schmidt, Subgroups permutable with all Sylow subgroups, J. Algebra, 207:285–293, 1998. Zbl0910.20015MR1643106
  18. X. Shen, S. Li, W. Shi, Finite groups with normally embedded subgroups, J. Group Theory, 13:257–265, 2010. Zbl1196.20022MR2607580
  19. A. N. Skiba, On weakly s -permutable subgroups of finite groups, J. Algebra, 315:192–209, 2007. Zbl1130.20019MR2344341
  20. S. Srinivasan, Two sufficient conditions for supersolvability of finite groups, Israel J.Math, 35:210–214, 1980. Zbl0437.20012MR576471
  21. J. G. Thompson, Normal p -complements for finite groups, J. Algebra, 1:43–46, 1964. Zbl0119.26802MR167521
  22. Y. Wang, c -normality of groups and its properties, J. Algebra, 180:954–965, 1996. Zbl0847.20010MR1379219
  23. Y. Wang, Finite groups with some subgroups of Sylow subgroups c-supplemented, J. Algebra, 224:464-478, 2000. Zbl0953.20010MR1739589
  24. H. Wei, Y. Wang, On c * -normality and its properties, J. Group Theory, 10:211–223, 2007. Zbl1125.20011MR2302616
  25. H. Wielandt, Subnormal subgroups and permutation groups, lectures given at the Ohio State University, Columbus, Ohio, 1971. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.