Finite Groups with some -Permutably Embedded and Weakly -Permutable Subgroups
Fenfang Xie[1]; Jinjin Wang[1]; Jiayi Xia[1]; Guo Zhong[1]
- [1] School of Mathematical Sciences, Guangxi Teachers Education University, Nanning, Guangxi, 530023, P. R. China
Confluentes Mathematici (2013)
- Volume: 5, Issue: 1, page 93-100
- ISSN: 1793-7434
Access Full Article
topAbstract
topHow to cite
topXie, Fenfang, et al. "Finite Groups with some $s$-Permutably Embedded and Weakly $s$-Permutable Subgroups." Confluentes Mathematici 5.1 (2013): 93-100. <http://eudml.org/doc/275595>.
@article{Xie2013,
abstract = {Let $G$ be a finite group, $p$ the smallest prime dividing the order of $G$ and $P$ a Sylow $p$-subgroup of $G$ with the smallest generator number $d$. There is a set $\mathcal\{M\}_d(P) = \lbrace P_1, P_2, \cdots , P_d\rbrace $ of maximal subgroups of $P$ such that $\bigcap ^d _\{i=1\}P_i=\Phi (P)$. In the present paper, we investigate the structure of a finite group under the assumption that every member of $\mathcal\{M\}_d(P)$ is either $s$-permutably embedded or weakly $s$-permutable in $G$ to give criteria for a group to be $p$-supersolvable or $p$-nilpotent.},
affiliation = {School of Mathematical Sciences, Guangxi Teachers Education University, Nanning, Guangxi, 530023, P. R. China; School of Mathematical Sciences, Guangxi Teachers Education University, Nanning, Guangxi, 530023, P. R. China; School of Mathematical Sciences, Guangxi Teachers Education University, Nanning, Guangxi, 530023, P. R. China; School of Mathematical Sciences, Guangxi Teachers Education University, Nanning, Guangxi, 530023, P. R. China},
author = {Xie, Fenfang, Wang, Jinjin, Xia, Jiayi, Zhong, Guo},
journal = {Confluentes Mathematici},
keywords = {weakly $s$-permutable subgoups; $s$-permutably embedded subgroups; $p$-nilpotent groups; finite groups; weakly -permutable subgoups; -permutably embedded subgroups; -nilpotent groups; maximal subgroups; Sylow subgroups; -nilpotency; -supersolvability},
language = {eng},
number = {1},
pages = {93-100},
publisher = {Institut Camille Jordan},
title = {Finite Groups with some $s$-Permutably Embedded and Weakly $s$-Permutable Subgroups},
url = {http://eudml.org/doc/275595},
volume = {5},
year = {2013},
}
TY - JOUR
AU - Xie, Fenfang
AU - Wang, Jinjin
AU - Xia, Jiayi
AU - Zhong, Guo
TI - Finite Groups with some $s$-Permutably Embedded and Weakly $s$-Permutable Subgroups
JO - Confluentes Mathematici
PY - 2013
PB - Institut Camille Jordan
VL - 5
IS - 1
SP - 93
EP - 100
AB - Let $G$ be a finite group, $p$ the smallest prime dividing the order of $G$ and $P$ a Sylow $p$-subgroup of $G$ with the smallest generator number $d$. There is a set $\mathcal{M}_d(P) = \lbrace P_1, P_2, \cdots , P_d\rbrace $ of maximal subgroups of $P$ such that $\bigcap ^d _{i=1}P_i=\Phi (P)$. In the present paper, we investigate the structure of a finite group under the assumption that every member of $\mathcal{M}_d(P)$ is either $s$-permutably embedded or weakly $s$-permutable in $G$ to give criteria for a group to be $p$-supersolvable or $p$-nilpotent.
LA - eng
KW - weakly $s$-permutable subgoups; $s$-permutably embedded subgroups; $p$-nilpotent groups; finite groups; weakly -permutable subgoups; -permutably embedded subgroups; -nilpotent groups; maximal subgroups; Sylow subgroups; -nilpotency; -supersolvability
UR - http://eudml.org/doc/275595
ER -
References
top- K. Al-Sharo, On some maximal -quasinormal subgroups of finite groups, Beiträge zur Algebra und Geometrie, 49:227–232, 2008. Zbl1144.20009MR2410577
- M. Asaad, A. A. Heliel, On -quasinormal embedded subgroups of finite groups, J. Pure Appl. Algebra, 165:129–135, 2001. Zbl1011.20019MR1865961
- A. Ballester-Bolinches, M. C. Pedraza-Aguilera, Sufficient conditions for supersolubility of finite groups, J. Pure Appl. Algebra, 127:113–118, 1998. Zbl0928.20020MR1620696
- K. Doerk, Finite Soluble Groups, Berlin, Walterde Gruyter, 1992. Zbl0753.20001MR1169099
- W. E. Deskins, On quasinormal subgroups of finite groups, Mathematische Zeitschrift, 82:125–132, 1963. Zbl0114.02004MR153738
- D. Gorenstein, Finite group, Chelsea, New York, 1980. Zbl0463.20012
- B. Huppert, Endliche gruppen I, Springer, Berlin, 1967. Zbl0412.20002MR224703
- X. He, S. Li, X. Liu, On -quasinormal and -normal subgroups of prime power order in finite groups, Algebra Colloq., 18 (2011), 685–692. Zbl1241.20027MR2837005
- O. H. Kegel, Sylow-Gruppen und Subnormalteiler endlicher Gruppen, Math. Z., 78:205–221, 1962. Zbl0102.26802MR147527
- S. Li, X. He, On normally embedded subgroups of prime power order in finite groups, Comm. Algebra, 36:2333–2340, 2008. Zbl1146.20015MR2418390
- S. Li, Y. Li, On -quasinormal and -normal subgroups of a finite group, Czechoslovak Mathematical Journal 58:1083–1095, 2008. Zbl1166.20013MR2471167
- S. Li, Z. Shen, J. Liu, et al, The influence of -quasinormality of some subgroups on the structure of finite groups, J. Algebra, 319:4275–4287, 2008. Zbl1152.20019MR2407900
- D. H. Mclain, The existence of subgroups of given order in finite groups, Proc.Cambridge Philos.Soc, 53:278–285, 1957. Zbl0079.25403MR85260
- L. Miao, On weakly -permutable subgroups of finite groups, Bull Braz. Math. Soc. New Series, 41:223–235, 2010. Zbl1221.20014MR2738912
- D. J. S. Robinson, A course in the Theory of groups, New York, Springer-Verlag, 1982. Zbl0836.20001MR648604
- Z. Shen, W. Shi, Q. Zhang, -quasinormality of finite groups, Front. Math. China, 5:329–339, 2010. Zbl1200.20014MR2610728
- P. Schmidt, Subgroups permutable with all Sylow subgroups, J. Algebra, 207:285–293, 1998. Zbl0910.20015MR1643106
- X. Shen, S. Li, W. Shi, Finite groups with normally embedded subgroups, J. Group Theory, 13:257–265, 2010. Zbl1196.20022MR2607580
- A. N. Skiba, On weakly -permutable subgroups of finite groups, J. Algebra, 315:192–209, 2007. Zbl1130.20019MR2344341
- S. Srinivasan, Two sufficient conditions for supersolvability of finite groups, Israel J.Math, 35:210–214, 1980. Zbl0437.20012MR576471
- J. G. Thompson, Normal -complements for finite groups, J. Algebra, 1:43–46, 1964. Zbl0119.26802MR167521
- Y. Wang, -normality of groups and its properties, J. Algebra, 180:954–965, 1996. Zbl0847.20010MR1379219
- Y. Wang, Finite groups with some subgroups of Sylow subgroups c-supplemented, J. Algebra, 224:464-478, 2000. Zbl0953.20010MR1739589
- H. Wei, Y. Wang, On -normality and its properties, J. Group Theory, 10:211–223, 2007. Zbl1125.20011MR2302616
- H. Wielandt, Subnormal subgroups and permutation groups, lectures given at the Ohio State University, Columbus, Ohio, 1971.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.