On varieties of Hilbert type

Lior Bary-Soroker[1]; Arno Fehm[2]; Sebastian Petersen[3]

  • [1] Schreiber 208 School of Mathematical Sciences Tel Aviv University Ramat Aviv Tel Aviv 6997801 (Israel)
  • [2] Universität Konstanz Fachbereich Mathematik und Statistik Fach 203 78457 Konstanz (Germany)
  • [3] Fachbereich Mathematik Universität Kassel Heinrich-Plettstr. 40 D-34132 Kassel (Germany)

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 5, page 1893-1901
  • ISSN: 0373-0956

Abstract

top
A variety X over a field K is of Hilbert type if X ( K ) is not thin. We prove that if f : X S is a dominant morphism of K -varieties and both S and all fibers f - 1 ( s ) , s S ( K ) , are of Hilbert type, then so is X . We apply this to answer a question of Serre on products of varieties and to generalize a result of Colliot-Thélène and Sansuc on algebraic groups.

How to cite

top

Bary-Soroker, Lior, Fehm, Arno, and Petersen, Sebastian. "On varieties of Hilbert type." Annales de l’institut Fourier 64.5 (2014): 1893-1901. <http://eudml.org/doc/275596>.

@article{Bary2014,
abstract = {A variety $X$ over a field $K$ is of Hilbert type if $X(K)$ is not thin. We prove that if $f\colon X\rightarrow S$ is a dominant morphism of $K$-varieties and both $S$ and all fibers $f^\{-1\}(s)$, $s\in S(K)$, are of Hilbert type, then so is $X$. We apply this to answer a question of Serre on products of varieties and to generalize a result of Colliot-Thélène and Sansuc on algebraic groups.},
affiliation = {Schreiber 208 School of Mathematical Sciences Tel Aviv University Ramat Aviv Tel Aviv 6997801 (Israel); Universität Konstanz Fachbereich Mathematik und Statistik Fach 203 78457 Konstanz (Germany); Fachbereich Mathematik Universität Kassel Heinrich-Plettstr. 40 D-34132 Kassel (Germany)},
author = {Bary-Soroker, Lior, Fehm, Arno, Petersen, Sebastian},
journal = {Annales de l’institut Fourier},
keywords = {Thin set; variety of Hilbert type; Hilbertian field; algebraic group; thin set},
language = {eng},
number = {5},
pages = {1893-1901},
publisher = {Association des Annales de l’institut Fourier},
title = {On varieties of Hilbert type},
url = {http://eudml.org/doc/275596},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Bary-Soroker, Lior
AU - Fehm, Arno
AU - Petersen, Sebastian
TI - On varieties of Hilbert type
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 5
SP - 1893
EP - 1901
AB - A variety $X$ over a field $K$ is of Hilbert type if $X(K)$ is not thin. We prove that if $f\colon X\rightarrow S$ is a dominant morphism of $K$-varieties and both $S$ and all fibers $f^{-1}(s)$, $s\in S(K)$, are of Hilbert type, then so is $X$. We apply this to answer a question of Serre on products of varieties and to generalize a result of Colliot-Thélène and Sansuc on algebraic groups.
LA - eng
KW - Thin set; variety of Hilbert type; Hilbertian field; algebraic group; thin set
UR - http://eudml.org/doc/275596
ER -

References

top
  1. Armand Borel, Linear algebraic groups, 126 (1991), Springer-Verlag, New York Zbl0726.20030MR1102012
  2. Jean-Louis Colliot-Thélène, Jean-Jacques Sansuc, Principal homogeneous spaces under flasque tori: applications, J. Algebra 106 (1987), 148-205 Zbl0597.14014MR878473
  3. Brian Conrad, A modern proof of Chevalley’s theorem on algebraic groups, J. Ramanujan Math. Soc. 17 (2002), 1-18 Zbl1007.14005MR1906417
  4. Pietro Corvaja, Rational fixed points for linear group actions, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007), 561-597 Zbl1207.11067MR2394411
  5. Michael D. Fried, Moshe Jarden, Field arithmetic, 11 (2008), Springer-Verlag, Berlin Zbl0625.12001MR2445111
  6. A. Grothendieck, Éléments de géométrie algébrique: II. Étude globale élémentaire de quelques classes de morphismes, Inst. Hautes Études Sci. Publ. Math. (1961), 5-222 
  7. A. Grothendieck, Éléments de géométrie algébrique: III. Étude cohomologique des faisceaux cohérents, Première partie, Inst. Hautes Études Sci. Publ. Math. (1961), 5-167 Zbl0122.16102
  8. A. Grothendieck, Revêtements étales et groupe fondamental. Fasc. I: Exposés 1 à 5, 1960/61 (1963), Institut des Hautes Études Scientifiques, Paris 
  9. A. Grothendieck, Revêtements étales et groupe fondamental. Fasc. II: Exposés 6, 8 à 11, 1960/61 (1963), Institut des Hautes Études Scientifiques, Paris 
  10. A. Grothendieck, Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Première partie, Inst. Hautes Études Sci. Publ. Math. (1964), 5-259 Zbl0136.15901
  11. A. Grothendieck, Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Deuxième partie, Inst. Hautes Études Sci. Publ. Math. (1965), 5-231 Zbl0135.39701
  12. A. Grothendieck, Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné): IV. Étude locale des schémas et des morphismes de schémas, Troisième partie, Inst. Hautes Études Sci. Publ. Math. (1966), 5-255 Zbl0144.19904
  13. János Kollár, Rationally connected varieties and fundamental groups, Higher dimensional varieties and rational points (Budapest, 2001) 12 (2003), 69-92, Springer, Berlin Zbl1075.14017MR2011744
  14. J. Milne, Basic Theory of Affine Group Schemes, (2012) 
  15. Jürgen Neukirch, Alexander Schmidt, Kay Wingberg, Cohomology of number fields, 323 (2008), Springer-Verlag, Berlin Zbl1136.11001MR2392026
  16. Maxwell Rosenlicht, Questions of rationality for solvable algebraic groups over nonperfect fields, Ann. Mat. Pura Appl. (4) 61 (1963), 97-120 Zbl0126.16901MR158891
  17. J.-J. Sansuc, Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. Reine Angew. Math. 327 (1981), 12-80 Zbl0468.14007MR631309
  18. Jean-Pierre Serre, Galois cohomology, (1997), Springer-Verlag, Berlin Zbl0812.12002MR1466966
  19. Jean-Pierre Serre, Topics in Galois theory, 1 (2008), A K Peters, Ltd., Wellesley, MA Zbl1128.12001MR2363329

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.