On varieties of Hilbert type
Lior Bary-Soroker[1]; Arno Fehm[2]; Sebastian Petersen[3]
- [1] Schreiber 208 School of Mathematical Sciences Tel Aviv University Ramat Aviv Tel Aviv 6997801 (Israel)
- [2] Universität Konstanz Fachbereich Mathematik und Statistik Fach 203 78457 Konstanz (Germany)
- [3] Fachbereich Mathematik Universität Kassel Heinrich-Plettstr. 40 D-34132 Kassel (Germany)
Annales de l’institut Fourier (2014)
- Volume: 64, Issue: 5, page 1893-1901
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBary-Soroker, Lior, Fehm, Arno, and Petersen, Sebastian. "On varieties of Hilbert type." Annales de l’institut Fourier 64.5 (2014): 1893-1901. <http://eudml.org/doc/275596>.
@article{Bary2014,
abstract = {A variety $X$ over a field $K$ is of Hilbert type if $X(K)$ is not thin. We prove that if $f\colon X\rightarrow S$ is a dominant morphism of $K$-varieties and both $S$ and all fibers $f^\{-1\}(s)$, $s\in S(K)$, are of Hilbert type, then so is $X$. We apply this to answer a question of Serre on products of varieties and to generalize a result of Colliot-Thélène and Sansuc on algebraic groups.},
affiliation = {Schreiber 208 School of Mathematical Sciences Tel Aviv University Ramat Aviv Tel Aviv 6997801 (Israel); Universität Konstanz Fachbereich Mathematik und Statistik Fach 203 78457 Konstanz (Germany); Fachbereich Mathematik Universität Kassel Heinrich-Plettstr. 40 D-34132 Kassel (Germany)},
author = {Bary-Soroker, Lior, Fehm, Arno, Petersen, Sebastian},
journal = {Annales de l’institut Fourier},
keywords = {Thin set; variety of Hilbert type; Hilbertian field; algebraic group; thin set},
language = {eng},
number = {5},
pages = {1893-1901},
publisher = {Association des Annales de l’institut Fourier},
title = {On varieties of Hilbert type},
url = {http://eudml.org/doc/275596},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Bary-Soroker, Lior
AU - Fehm, Arno
AU - Petersen, Sebastian
TI - On varieties of Hilbert type
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 5
SP - 1893
EP - 1901
AB - A variety $X$ over a field $K$ is of Hilbert type if $X(K)$ is not thin. We prove that if $f\colon X\rightarrow S$ is a dominant morphism of $K$-varieties and both $S$ and all fibers $f^{-1}(s)$, $s\in S(K)$, are of Hilbert type, then so is $X$. We apply this to answer a question of Serre on products of varieties and to generalize a result of Colliot-Thélène and Sansuc on algebraic groups.
LA - eng
KW - Thin set; variety of Hilbert type; Hilbertian field; algebraic group; thin set
UR - http://eudml.org/doc/275596
ER -
References
top- Armand Borel, Linear algebraic groups, 126 (1991), Springer-Verlag, New York Zbl0726.20030MR1102012
- Jean-Louis Colliot-Thélène, Jean-Jacques Sansuc, Principal homogeneous spaces under flasque tori: applications, J. Algebra 106 (1987), 148-205 Zbl0597.14014MR878473
- Brian Conrad, A modern proof of Chevalley’s theorem on algebraic groups, J. Ramanujan Math. Soc. 17 (2002), 1-18 Zbl1007.14005MR1906417
- Pietro Corvaja, Rational fixed points for linear group actions, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007), 561-597 Zbl1207.11067MR2394411
- Michael D. Fried, Moshe Jarden, Field arithmetic, 11 (2008), Springer-Verlag, Berlin Zbl0625.12001MR2445111
- A. Grothendieck, Éléments de géométrie algébrique: II. Étude globale élémentaire de quelques classes de morphismes, Inst. Hautes Études Sci. Publ. Math. (1961), 5-222
- A. Grothendieck, Éléments de géométrie algébrique: III. Étude cohomologique des faisceaux cohérents, Première partie, Inst. Hautes Études Sci. Publ. Math. (1961), 5-167 Zbl0122.16102
- A. Grothendieck, Revêtements étales et groupe fondamental. Fasc. I: Exposés 1 à 5, 1960/61 (1963), Institut des Hautes Études Scientifiques, Paris
- A. Grothendieck, Revêtements étales et groupe fondamental. Fasc. II: Exposés 6, 8 à 11, 1960/61 (1963), Institut des Hautes Études Scientifiques, Paris
- A. Grothendieck, Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Première partie, Inst. Hautes Études Sci. Publ. Math. (1964), 5-259 Zbl0136.15901
- A. Grothendieck, Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Deuxième partie, Inst. Hautes Études Sci. Publ. Math. (1965), 5-231 Zbl0135.39701
- A. Grothendieck, Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné): IV. Étude locale des schémas et des morphismes de schémas, Troisième partie, Inst. Hautes Études Sci. Publ. Math. (1966), 5-255 Zbl0144.19904
- János Kollár, Rationally connected varieties and fundamental groups, Higher dimensional varieties and rational points (Budapest, 2001) 12 (2003), 69-92, Springer, Berlin Zbl1075.14017MR2011744
- J. Milne, Basic Theory of Affine Group Schemes, (2012)
- Jürgen Neukirch, Alexander Schmidt, Kay Wingberg, Cohomology of number fields, 323 (2008), Springer-Verlag, Berlin Zbl1136.11001MR2392026
- Maxwell Rosenlicht, Questions of rationality for solvable algebraic groups over nonperfect fields, Ann. Mat. Pura Appl. (4) 61 (1963), 97-120 Zbl0126.16901MR158891
- J.-J. Sansuc, Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. Reine Angew. Math. 327 (1981), 12-80 Zbl0468.14007MR631309
- Jean-Pierre Serre, Galois cohomology, (1997), Springer-Verlag, Berlin Zbl0812.12002MR1466966
- Jean-Pierre Serre, Topics in Galois theory, 1 (2008), A K Peters, Ltd., Wellesley, MA Zbl1128.12001MR2363329
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.