Rational fixed points for linear group actions
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2007)
- Volume: 6, Issue: 4, page 561-597
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topCorvaja, Pietro. "Rational fixed points for linear group actions." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 6.4 (2007): 561-597. <http://eudml.org/doc/272251>.
@article{Corvaja2007,
abstract = {We prove a version of the Hilbert Irreducibility Theorem for linear algebraic groups. Given a connected linear algebraic group $G$, an affine variety $V$ and a finite map $\pi :V\rightarrow G$, all defined over a finitely generated field $\kappa $ of characteristic zero, Theorem 1.6 provides the natural necessary and sufficient condition under which the set $\pi (V(\kappa ))$ contains a Zariski dense sub-semigroup $\Gamma \subset G(\kappa )$; namely, there must exist an unramified covering $p:\tilde\{G\}\rightarrow G$ and a map $\theta :\tilde\{G\}\rightarrow V$ such that $\pi \circ \theta =p$. In the case $\kappa =\mathbb \{Q\}$, $G=\mathbb \{G\}_\{a\}$ is the additive group, we reobtain the original Hilbert Irreducibility Theorem. Our proof uses a new diophantine result, due to Ferretti and Zannier [9]. As a first application, we obtain (Theorem 1.1) a necessary condition for the existence of rational fixed points for all the elements of a Zariski-dense sub-semigroup of a linear group acting morphically on an algebraic variety. A second application concerns the characterisation of algebraic subgroups of $\operatorname\{GL\}_N$ admitting a Zariski-dense sub-semigroup formed by matrices with at least one rational eigenvalue.},
author = {Corvaja, Pietro},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Algebraic groups; Hilbert irreducibility},
language = {eng},
number = {4},
pages = {561-597},
publisher = {Scuola Normale Superiore, Pisa},
title = {Rational fixed points for linear group actions},
url = {http://eudml.org/doc/272251},
volume = {6},
year = {2007},
}
TY - JOUR
AU - Corvaja, Pietro
TI - Rational fixed points for linear group actions
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2007
PB - Scuola Normale Superiore, Pisa
VL - 6
IS - 4
SP - 561
EP - 597
AB - We prove a version of the Hilbert Irreducibility Theorem for linear algebraic groups. Given a connected linear algebraic group $G$, an affine variety $V$ and a finite map $\pi :V\rightarrow G$, all defined over a finitely generated field $\kappa $ of characteristic zero, Theorem 1.6 provides the natural necessary and sufficient condition under which the set $\pi (V(\kappa ))$ contains a Zariski dense sub-semigroup $\Gamma \subset G(\kappa )$; namely, there must exist an unramified covering $p:\tilde{G}\rightarrow G$ and a map $\theta :\tilde{G}\rightarrow V$ such that $\pi \circ \theta =p$. In the case $\kappa =\mathbb {Q}$, $G=\mathbb {G}_{a}$ is the additive group, we reobtain the original Hilbert Irreducibility Theorem. Our proof uses a new diophantine result, due to Ferretti and Zannier [9]. As a first application, we obtain (Theorem 1.1) a necessary condition for the existence of rational fixed points for all the elements of a Zariski-dense sub-semigroup of a linear group acting morphically on an algebraic variety. A second application concerns the characterisation of algebraic subgroups of $\operatorname{GL}_N$ admitting a Zariski-dense sub-semigroup formed by matrices with at least one rational eigenvalue.
LA - eng
KW - Algebraic groups; Hilbert irreducibility
UR - http://eudml.org/doc/272251
ER -
References
top- [1] J. Bernik, On groups and semigroups of matrices with spectra in a finitely generated field, Linear and Multilinear Algebra53 (2005), 259–267. Zbl1085.15020MR2160409
- [2] J. Bernik and J. Okniński, On semigroups of matrices with eigenvalue in small dimension, Linear Algebra Appl.405 (2005), 67–73. Zbl1079.15017MR2148162
- [3] E. Bombieri, D. Masser and U. Zannier, Intersecting a curve with algebraic subgroups of multiplicative groups, Int. Math. Res. Not.20 (1999), 1119–1140. Zbl0938.11031MR1728021
- [4] A. Borel, “Introduction aux groupes arithmétiques”, Hermann, Paris, 1969. Zbl0186.33202MR244260
- [5] A. Borel, “Linear Algebraic Groups”, 2nd Edition, GTM 126, Springer Verlag, 1997. Zbl0726.20030MR1102012
- [6] C. W. Curtis and I. Reiner, “Representation Theory of Finite Groups and Associative Algebras”, John Wiley & Sons, 1962. Zbl0634.20001
- [7] P. Dèbes, On the irreducibility of the polynomial , J. Number Theory, 42 (1992), 141–157. Zbl0770.12005MR1183373
- [8] R. Dvornicich and U. Zannier, Cyclotomic diophantine problems (Hilbert irreducibility and invariant sets for polynomial maps), Duke Math. J., to appear. Zbl1127.11040MR2350852
- [9] A. Ferretti and U. Zannier, Equations in the Hadamard ring of rational functions, Ann. Scuola Norm. Sup. Cl. Sci.6 (2007), 457–475. Zbl1150.11008MR2370269
- [10] D. Hilbert, Ueber die Irreducibilität ganzer rationaler Functionen mit ganzzahligen Coefficienten, J. Reine Angew. Math. 110 (1892), 104–129. Zbl24.0087.03JFM24.0087.03
- [11] S. Lang, “Fundamentals of Diophantine Geometry”, Springer Verlag, 1984. Zbl0528.14013MR715605
- [12] M. Laurent, Equations diophantiennes exponentielles et suites récurrentes linéaires II, J. Number Theory31 (1988), 24–53. Zbl0661.10027MR978098
- [13] D. W. Masser, Specializations of finitely generated subgroups of abelian varieties, Trans. Amer. Math. Soc.311 (1989), 413–424. Zbl0673.14016MR974783
- [14] A. van der Poorten, Some facts that should be better known, especially about rational functions, In: “Number Theory and Applications (Banff, AB 1988)”, Kluwer Acad. Publ., Dordrecht (1989), 497-528. Zbl0687.10007MR1123092
- [15] G. Prasad and A. Rapinchuk, Existence of irreducible -regular elements in Zariski-dense subgroups, Math. Res. Lett.10 (2003), 21–32. Zbl1029.22020MR1960120
- [16] G. Prasad and A. Rapinchuk, Zariski-dense subgroups and transcendental number theory, Math. Res. Lett.12 (2005), 239–249. Zbl1072.22009MR2150880
- [17] R. Rumely, Notes on van der Poorten proof of the Hadamard quotient theorem II, In: “Séminaire de Théorie des Nombres de Paris 1986-87”, Progress in Mathematics, Birkhäuser, 1988. Zbl0661.10017MR990517
- [18] J.-P. Serre, “Lectures on the Mordell-Weil Theorem”, 3rd Edition, Vieweg-Verlag, 1997. Zbl0863.14013MR1757192
- [19] W. M. Schmidt, Linear Recurrence Sequences and Polynomial-Exponential Equations, In: “Diophantine Approximation”, F. Amoroso and U. Zannier (eds.), Proceedings of the C.I.M.E. Conference, Cetraro 2000, Springer LNM 1829, 2003. Zbl1034.11011MR2009831
- [20] U. Zannier, A proof of Pisot’s -th root conjecture, Ann. of Math.151 (2000), 375–383. Zbl0995.11007MR1745008
- [21] U. Zannier, “Some Applications of Diophantine Approximations to Diophantine Equations”, Forum Editrice, Udine, 2003. Zbl0341.10017
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.