Quasi-periodic and periodic solutions of the Toda lattice via the hyperelliptic sigma function

Yuji Kodama[1]; Shigeki Matsutani[2]; Emma Previato[3]

  • [1] Department of Mathematics The Ohio State University Columbus, OH 43210, U.S.A.
  • [2] 8-21-1 Higashi-Linkan, Minami-ku Sagamihara 252-0311, JAPAN
  • [3] Department of Mathematics and Statistics, Boston University, Boston, MA 02215-2411, U.S.A.

Annales de l’institut Fourier (2013)

  • Volume: 63, Issue: 2, page 655-688
  • ISSN: 0373-0956

Abstract

top
A lattice model with exponential interaction, was proposed and integrated by M. Toda in the 1960s; it was then extensively studied as one of the completely integrable (differential-difference) equations by algebro-geometric methods, which produced both quasi-periodic solutions in terms of theta functions of hyperelliptic curves and periodic solutions defined on suitable Jacobians by the Lax-pair method. In this work, we revisit Toda’s original approach to give solutions of the Toda lattice in terms of hyperelliptic Kleinian (“sigma”) functions for arbitrary genus. We then show that periodic solutions of the Toda lattice correspond to the zeros of Kiepert-Brioschi’s division polynomials, and note these are related to solutions of Poncelet’s closure problem. The hyperelliptic curve of our approach is related in a non-trivial way to the one given by the Lax pair.

How to cite

top

Kodama, Yuji, Matsutani, Shigeki, and Previato, Emma. "Quasi-periodic and periodic solutions of the Toda lattice via the hyperelliptic sigma function." Annales de l’institut Fourier 63.2 (2013): 655-688. <http://eudml.org/doc/275599>.

@article{Kodama2013,
abstract = {A lattice model with exponential interaction, was proposed and integrated by M. Toda in the 1960s; it was then extensively studied as one of the completely integrable (differential-difference) equations by algebro-geometric methods, which produced both quasi-periodic solutions in terms of theta functions of hyperelliptic curves and periodic solutions defined on suitable Jacobians by the Lax-pair method. In this work, we revisit Toda’s original approach to give solutions of the Toda lattice in terms of hyperelliptic Kleinian (“sigma”) functions for arbitrary genus. We then show that periodic solutions of the Toda lattice correspond to the zeros of Kiepert-Brioschi’s division polynomials, and note these are related to solutions of Poncelet’s closure problem. The hyperelliptic curve of our approach is related in a non-trivial way to the one given by the Lax pair.},
affiliation = {Department of Mathematics The Ohio State University Columbus, OH 43210, U.S.A.; 8-21-1 Higashi-Linkan, Minami-ku Sagamihara 252-0311, JAPAN; Department of Mathematics and Statistics, Boston University, Boston, MA 02215-2411, U.S.A.},
author = {Kodama, Yuji, Matsutani, Shigeki, Previato, Emma},
journal = {Annales de l’institut Fourier},
keywords = {Toda lattice equation; hyperelliptic sigma function},
language = {eng},
number = {2},
pages = {655-688},
publisher = {Association des Annales de l’institut Fourier},
title = {Quasi-periodic and periodic solutions of the Toda lattice via the hyperelliptic sigma function},
url = {http://eudml.org/doc/275599},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Kodama, Yuji
AU - Matsutani, Shigeki
AU - Previato, Emma
TI - Quasi-periodic and periodic solutions of the Toda lattice via the hyperelliptic sigma function
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 2
SP - 655
EP - 688
AB - A lattice model with exponential interaction, was proposed and integrated by M. Toda in the 1960s; it was then extensively studied as one of the completely integrable (differential-difference) equations by algebro-geometric methods, which produced both quasi-periodic solutions in terms of theta functions of hyperelliptic curves and periodic solutions defined on suitable Jacobians by the Lax-pair method. In this work, we revisit Toda’s original approach to give solutions of the Toda lattice in terms of hyperelliptic Kleinian (“sigma”) functions for arbitrary genus. We then show that periodic solutions of the Toda lattice correspond to the zeros of Kiepert-Brioschi’s division polynomials, and note these are related to solutions of Poncelet’s closure problem. The hyperelliptic curve of our approach is related in a non-trivial way to the one given by the Lax pair.
LA - eng
KW - Toda lattice equation; hyperelliptic sigma function
UR - http://eudml.org/doc/275599
ER -

References

top
  1. M. Adler, L. Haine, P. van Moerbeke, Limit matrices for the Toda flow and periodic flags for loop groups, Math. Ann. 296 (1993), 1-33 Zbl0788.58028MR1213369
  2. M. Adler, P. van Moerbeke, The Toda Lattice, Dynkin diagrams, singularities and Abelian varieties, Invent. Math. 103 (1991), 223-278 Zbl0735.14031MR1085107
  3. M. Adler, P. van Moerbeke, P. Vanhaecke, Algebraic integrability, Painlevé geometry and Lie algebras, 47 (2004), Springer-Verlag, Berlin Zbl1083.37001MR2095251
  4. H. F. Baker, Abelian Functions, Abel’s theorem and the allied theory of theta functions, (1897), Cambridge University Press, Cambridge Zbl0848.14012MR1386644
  5. H. F. Baker, On the hyperelliptic sigma functions, Amer. J. Math 20 (1898), 301-384 Zbl29.0394.03MR1505779
  6. H. F. Baker, On a system of differential equations leading to periodic functions, Acta Math. 27 (1903), 135-156 Zbl34.0464.03MR1554977
  7. E. D. Belokolos, V. Z. Enolskii, M. Salerno, Wannier functions for quasi-periodic finite-gap potentials, Theor. Math. Phys. 144 (2005), 1081-1099 Zbl1178.14033MR2194278
  8. F. Brioschi, Sur quelques formules pour la multiplication des fonctions elliptiques, C. R. Acad. Sci. Paris 59 (1864), 769-775 
  9. V. M. Buchstaber, V. Z. Enolskii, D. V. Leykin, Kleinian Functions, Hyperelliptic Jacobians and Applications, Reviews in Mathematics and Mathematical Physics (London) (1997), 1-125, NovikovS.P.S., India Zbl0911.14019
  10. V. P. Burskii, A. S. Zhedanov, On Dirichlet, Poncelet and Abel problems Zbl1264.14043
  11. D.G. Cantor, On the analogue of the division polynomials for hyperelliptic curves, J. reine angew. Math. 447 (1994), 91-145 Zbl0788.14026MR1263171
  12. L. Casian, Y. Kodama, Compactification of the isospectral varieties of nilpotent Toda lattices, RIMS Proceedings (Kyoto University). Surikaisekiken Kokyuroku 1400 (2004), 39-87 
  13. V. Dragović, M. Radnović, Cayley-type conditions for billiards within k quadrics in d , J. Phys. A 37 (2004), 1269-1276 Zbl1108.37041MR2043219
  14. J. C. Eilbeck, V. Z. Enolski, J. Gibbons, Sigma, tau and Abelian functions of algebraic curves, J. Phys. A 43 (2010) Zbl1223.14067MR2733859
  15. J. C. Eilbeck, D. V. Enolskii, On the Kleinian construction of Abelian functions of canonical algebraic curves, Proceedings of the 1998 SIDE III conference (2000) Zbl1003.14008
  16. J. C. Eilbeck, V. Z. Enol’skii, S. Matsutani, Y. Ônishi, E. Previato, Abelian functions for trigonal curves of genus three, Int. Math. Res. Notices (2008) Zbl1210.14032
  17. J. C. Eilbeck, V. Z. Enol’skii, S. Matsutani, Y. Ônishi, E. Previato, Addition formulae over the Jacobian pre-image of hyperelliptic Wirtinger varieties, J. Reine Angew. Math. 619 (2008), 37-48 Zbl1165.14022MR2414946
  18. V. Z. Enolski, J. Gibbons, Addition theorems on the strata of the theta divisor of genus three hyperelliptic curves, (2002), draft 
  19. J. D. Fay, Theta functions on Riemann Surfaces, 352 (1973), Springer-Verlag, Berlin-New York Zbl0281.30013MR335789
  20. H. Flaschka, L. Haine, Variétés de drapeaux et réseaux de Toda, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), 255-258 Zbl0721.58021MR1089709
  21. F. Gesztesy, H. Holden, J. Michor, G. Teschl, Soliton equations and their algebro-geometric solutions. Vol. II. (1 + 1)-dimensional discrete models, 114 (2008), Cambridge University Press, Cambridge Zbl1151.37056MR2446594
  22. P. Griffiths, J. Harris, On Cayley’s explicit solution to Poncelet’s porism, Enseign. Math. 24 (1978), 31-40 Zbl0384.14009MR497281
  23. P. A. Griffiths, Variations on a theorem of Abel, Invent. Math. 35 (1976), 321-390 Zbl0339.14003MR435074
  24. K. Hashimoto, Y. Sakai, General form of Humbert’s modular equation for curves with real multiplication of Δ = 5 , Proc. Japan Acad. 85 (2009), 171-176 Zbl1245.11073MR2591363
  25. R. Hirota, Soliton no suuri: Mathematics in soliton Zbl1099.35111MR2085332
  26. G. Humbert, Sur les fonctions abéliennes singulières, Oeuvres de G. Humbert 2 (1936), 297-401, Gauthier-Villars, Paris 
  27. M. Kac, P. van Moerbeke, On some periodic Toda lattices, Proc. Nat. Acad. Sci. U.S.A. 72 (1975), 1627-1629 Zbl0343.34003MR367360
  28. L. Kiepert, Wirkliche Ausführung der ganzzahligen Multiplication der elliptischen Functionen, J. reine angew. Math. 76 (1873), 21-33 
  29. F. Klein, Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade, (1884), Teubner, Leipzig Zbl16.0061.01
  30. Y. Kodama, Topology of the real part of hyperelliptic Jacobian associated with the periodic Toda lattice, Teoret. Mat. Fiz. 133 (2002), 439-462 Zbl1067.37113MR2001554
  31. F. Leprévost, D. Markushevich, A tower of genus two curves related to the Kowalewski top, J. Reine Angew. Math. 514 (1999), 103-111 Zbl0961.11021MR1711287
  32. D. Markushevich, Kowalevski top and genus-2 curves, Kowalevski Workshop on Mathematical Methods of Regular Dynamics (Leeds, 2000), J. Phys. A 34 (2001), 2125-2135 Zbl0984.11030MR1831281
  33. S. Matsutani, Hyperelliptic solution of KdV and KP equations: re-evaluation of Baker’s study on hyperelliptic sigma functions, J. Phys. A: Math. Gen. 34 (2001), 4721-4732 Zbl0988.37090MR1840547
  34. S. Matsutani, Toda Equation and σ -Function of Genera One and Two, J. Nonlinear Math. Phys. 10 (2003), 555-561 Zbl1039.37063MR2011387
  35. S. Matsutani, Appendix in [45], Proc. Edinburgh Math. Soc. 48 (2005), 736-742 MR2171194
  36. S. Matsutani, Neumann system and hyperelliptic al functions, Surv. Math. Appl. 3 (2007), 13-25 Zbl1153.37428MR2390180
  37. S. Matsutani, E. Previato, Jacobi inversion on strata of the Jacobian of the C r s curve y r = f ( x ) . II 
  38. S. Matsutani, E. Previato, A generalized Kiepert Formula for C a b curves, Israel J. Math. 171 (2009), 305-323 Zbl1186.14025MR2520112
  39. H. P. McKean, P. van Moerbeke, Hill and Toda curves, Comm. Pure Appl. Math. 33 (1980), 23-42 Zbl0422.14017MR544043
  40. J.-F. Mestre, Courbes hyperelliptiques à multiplications réelles, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), 721-724 Zbl0704.14026MR972820
  41. P. van Moerbeke, The spectrum of Jacobi matrices, Invent. Math. 37 (1976), 45-81 Zbl0361.15010MR650253
  42. P. van Moerbeke, D. Mumford, The spectrum of difference operators and algebraic curves, Acta Math. 143 (1979), 93-154 Zbl0502.58032MR533894
  43. D. Mumford, Tata Lectures on Theta, (1984), Birkhäuser, Boston Zbl0549.14014MR742776
  44. A. Nakayashiki, Sigma function as a tau function, Int. Math. Res. Notices 2010 (2009), 373-394 Zbl1197.14049MR2587573
  45. Y. Ônishi, Determinant expressions for hyperelliptic functions, Proc. Edinburgh Math. Soc. 48 (2005), 705-742 Zbl1148.14303MR2171194
  46. R. J. Schilling, Generalizations of the Neumann system. A curve-theoretical approach. I, Comm. Pure Appl. Math. 40 (1987), 455-522 Zbl0662.35083MR890174
  47. R. J. Schilling, Generalizations of the Neumann system. A curve-theoretical approach. II, Comm. Pure Appl. Math. 42 (1989), 409-442 Zbl0699.35223MR990137
  48. R. J. Schilling, Generalizations of the Neumann system — a curve-theoretical approach. III, Comm. Pure Appl. Math. 45 (1992), 775-820 Zbl0817.35107MR1164065
  49. S. Tanaka, E. Date, KdV houteishiki, (1979), Kinokuniya Press, Tokyo 
  50. M. Toda, Vibration of a Chain with Nonlinear Interaction, J. Phys. Soc. Japan 22 (1967), 431-436 
  51. P. Vanhaecke, Integrable systems in the realm of algebraic geometry, 1638 (2001), Springer-Verlag, Berlin Zbl0997.37032MR1850713
  52. K. Weierstrass, Zur Theorie der Abelschen Funktionen, J. Reine Angew. Math. 47 (1854), 289-306 
  53. E. T. Whittaker, G. N. Watson, A Course of Modern Analysis, (1927), Cambridge University Press Zbl45.0433.02MR1424469

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.