A discrete variational approach for investigation of stationary localized states in a discrete nonlinear Schrödinger equation, named IN-DNLS.
Soit un groupe défini sur les rationnels, simplement connexe, -quasisimple et compact sur . On étudie des suites de sous-ensembles des points rationnels de définis par des conditions sur leur projection dans le groupe des adèles finies de . Nous montrons dans ce cadre un résultat d’équirépartition vers la probabilité de Haar sur le groupe des points réels. On utilise pour cela des propriétés de mélange de l’action du groupe des points adéliques sur l’espace . Pour illustrer ce résultat,...
We consider the cubic defocusing nonlinear Schrödinger equation in the two dimensional torus. Fix . Recently Colliander, Keel, Staffilani, Tao and Takaoka proved the existence of solutions with -Sobolev norm growing in time. We establish the existence of solutions with polynomial time estimates. More exactly, there is such that for any we find a solution and a time such that . Moreover, the time satisfies the polynomial bound .
In this paper we consider a chain of strings with fixed end points coupled with nearest neighbour interaction potential of exponential type, i.e.We consider the case of “closed chains” i.e. and some and look for solutions which are peirodic in time. The existence of periodic solutions for the dual problem is proved in Orlicz space setting.
In this paper we consider a chain of strings with fixed end points coupled with nearest neighbour interaction potential of exponential type, i.e. We consider the case of “closed chains" i.e. and some and look for solutions which are peirodic in time. The existence of periodic solutions for the dual problem is proved in Orlicz space setting.
We consider Schrödinger operators with dynamically defined potentials arising from continuous sampling along orbits of strictly ergodic transformations. The Gap Labeling Theorem states that the possible gaps in the spectrum can be canonically labelled by an at most countable set defined purely in terms of the dynamics. Which labels actually appear depends on the choice of the sampling function; the missing labels are said to correspond to collapsed gaps. Here we show that for any collapsed gap,...
In this paper we obtain results on existence of non-constant periodic traveling waves with arbitrary speed in infinite system of linearly coupled nonlinear oscillators on a two-dimensional lattice. Sufficient conditions for the existence of such solutions are obtained with the aid of critical point method and linking theorem.
A lattice model with exponential interaction, was proposed and integrated by M. Toda in the 1960s; it was then extensively studied as one of the completely integrable (differential-difference) equations by algebro-geometric methods, which produced both quasi-periodic solutions in terms of theta functions of hyperelliptic curves and periodic solutions defined on suitable Jacobians by the Lax-pair method. In this work, we revisit Toda’s original approach to give solutions of the Toda lattice in terms...