Naive boundary strata and nilpotent orbits

Matt Kerr[1]; Gregory Pearlstein[2]

  • [1] Department of Mathematics, Campus Box 1146 Washington University in St. Louis St. Louis, MO 63130 (USA)
  • [2] Mathematics Department, Mail stop 3368 Texas A&M University College Station, TX 77843 (USA)

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 6, page 2659-2714
  • ISSN: 0373-0956

Abstract

top
We give a Hodge-theoretic parametrization of certain real Lie group orbits in the compact dual of a Mumford-Tate domain, and characterize the orbits which contain a naive limit Hodge filtration. A series of examples are worked out for the groups S U ( 2 , 1 ) , S p 4 , and G 2 .

How to cite

top

Kerr, Matt, and Pearlstein, Gregory. "Naive boundary strata and nilpotent orbits." Annales de l’institut Fourier 64.6 (2014): 2659-2714. <http://eudml.org/doc/275602>.

@article{Kerr2014,
abstract = {We give a Hodge-theoretic parametrization of certain real Lie group orbits in the compact dual of a Mumford-Tate domain, and characterize the orbits which contain a naive limit Hodge filtration. A series of examples are worked out for the groups $SU(2,1)$, $Sp _4$, and $G_2$.},
affiliation = {Department of Mathematics, Campus Box 1146 Washington University in St. Louis St. Louis, MO 63130 (USA); Mathematics Department, Mail stop 3368 Texas A&M University College Station, TX 77843 (USA)},
author = {Kerr, Matt, Pearlstein, Gregory},
journal = {Annales de l’institut Fourier},
keywords = {Mumford-Tate groups; Mumford-Tate domains; nilpotent orbits; variation of Hodge structure; Shimura varieties},
language = {eng},
number = {6},
pages = {2659-2714},
publisher = {Association des Annales de l’institut Fourier},
title = {Naive boundary strata and nilpotent orbits},
url = {http://eudml.org/doc/275602},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Kerr, Matt
AU - Pearlstein, Gregory
TI - Naive boundary strata and nilpotent orbits
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 6
SP - 2659
EP - 2714
AB - We give a Hodge-theoretic parametrization of certain real Lie group orbits in the compact dual of a Mumford-Tate domain, and characterize the orbits which contain a naive limit Hodge filtration. A series of examples are worked out for the groups $SU(2,1)$, $Sp _4$, and $G_2$.
LA - eng
KW - Mumford-Tate groups; Mumford-Tate domains; nilpotent orbits; variation of Hodge structure; Shimura varieties
UR - http://eudml.org/doc/275602
ER -

References

top
  1. Jeffrey Adams, Guide to the Atlas software: computational representation theory of real reductive groups, Representation theory of real reductive Lie groups (Snowbird, July 2006) 472 (2008), 1-37, Amer. Math. Soc., Providence, RI Zbl1175.22001MR2454331
  2. Jeffrey Adams, Fokko du Cloux, Algorithms for representation theory of real reductive groups, J. Inst. Math. Jussieu 8 (2009), 209-259 Zbl1221.22017MR2485793
  3. Avner Ash, David Mumford, Michael Rapoport, Yung-Sheng Tai, Smooth compactifications of locally symmetric varieties, (2010), Cambridge University Press, Cambridge Zbl1209.14001MR2590897
  4. Armand Borel, Linear algebraic groups, 126 (1991), Springer-Verlag, New York Zbl0726.20030MR1102012
  5. Armand Borel, Jacques Tits, Groupes réductifs, Inst. Hautes Études Sci. Publ. Math. (1965), 55-150 Zbl0145.17402MR207712
  6. Henri Carayol, Cohomologie automorphe et compactifications partielles de certaines variéetés de Griffiths-Schmid, Compos. Math. 141 (2005), 1081-1102 Zbl1173.11331MR2157130
  7. James A. Carlson, Eduardo H. Cattani, Aroldo G. Kaplan, Mixed Hodge structures and compactifications of Siegel’s space (preliminary report), Algebraic Geometry, Angers, 1979 (A. Beauville, Ed) (1980), 77-105, Sijthoff & Noordhoff Zbl0471.14002MR605337
  8. Eduardo Cattani, Aroldo Kaplan, Polarized mixed Hodge structures and the local monodromy of a variation of Hodge structure, Invent. Math. 67 (1982), 101-115 Zbl0516.14005MR664326
  9. Eduardo Cattani, Aroldo Kaplan, Wilfried Schmid, Degeneration of Hodge structures, Ann. of Math. (2) 123 (1986), 457-535 Zbl0617.14005MR840721
  10. Eduardo H. Cattani, Mixed Hodge structures, compactifications and monodromy weight filtration, 106 (1984), 75-100, Princeton Univ. Press, Princeton, NJ Zbl0579.14010MR756847
  11. Gregor Fels, Alan Huckleberry, Joseph A. Wolf, Cycle spaces of flag domains, 245 (2006), Birkhäuser Boston, Inc., Boston, MA Zbl1084.22011MR2188135
  12. Mark Green, Phillip Griffiths, Matt Kerr, Mumford-Tate groups and domains, 183 (2012), Princeton University Press, Princeton, NJ Zbl1248.14001MR2918237
  13. Mark Green, Phillip Griffiths, Matt Kerr, Hodge theory, complex geometry, and representation theory, 118 (2013), Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI Zbl06235482MR3115136
  14. James E. Humphreys, Linear algebraic groups, (1975), Springer-Verlag, New York-Heidelberg Zbl0471.20029MR396773
  15. Matt Kerr, Gregory Pearlstein, Boundary components of Mumford-Tate domains Zbl06571493
  16. Anthony W. Knapp, Lie groups beyond an introduction, 140 (2002), Birkhäuser Boston, Inc., Boston, MA Zbl1075.22501MR1920389
  17. Toshihiko Matsuki, Closure relations for orbits on affine symmetric spaces under the action of minimal parabolic subgroups, Representations of Lie groups, Kyoto, Hiroshima, 1986, (eds. K. Okamoto and T. Oshima) 14 (1988), 541-559, Academic Press, Boston, MA Zbl0723.22020MR1039852
  18. Toshihiko Matsuki, Closure relations for orbits on affine symmetric spaces under the action of parabolic subgroups. Intersections of associated orbits, Hiroshima Math. J. 18 (1988), 59-67 Zbl0652.53035MR935882
  19. J. S. Milne, Canonical models of (mixed) Shimura varieties and automorphic vector bundles, Automorphic forms, Shimura varieties, and -functions, Vol. I (Ann Arbor, MI, 1988) 10 (1990), 283-414, Academic Press, Boston, MA Zbl0704.14016MR1044823
  20. Gregory J. Pearlstein, Variations of mixed Hodge structure, Higgs fields, and quantum cohomology, Manuscripta Math. 102 (2000), 269-310 Zbl0973.32008MR1777521
  21. R. Pink, Arithmetical compactification of mixed Shimura varieties, (1989) Zbl0748.14007MR1128753
  22. R. W. Richardson, T. A. Springer, The Bruhat order on symmetric varieties, Geom. Dedicata 35 (1990), 389-436 Zbl0704.20039MR1066573
  23. R. W. Richardson, T. A. Springer, Combinatorics and geometry of K -orbits on the flag manifold, Linear algebraic groups and their representations (Los Angeles, CA, 1992) 153 (1993), 109-142, Amer. Math. Soc., Providence, RI Zbl0840.20039MR1247501
  24. C. Robles, Schubert varieties as variations of Hodge structure, Selecta Math. (N.S.) 20 (2014), 719-768 Zbl1328.32003MR3217458
  25. Wilfried Schmid, Variation of Hodge structure: the singularities of the period mapping, Invent. Math. 22 (1973), 211-319 Zbl0278.14003MR382272
  26. P. Trapa, Computing real Weyl groups Zbl1070.22003
  27. Joseph A. Wolf, The action of a real semisimple group on a complex flag manifold. I. Orbit structure and holomorphic arc components, Bull. Amer. Math. Soc. 75 (1969), 1121-1237 Zbl0183.50901MR251246
  28. Joseph A. Wolf, Fine structure of Hermitian symmetric spaces, Symmetric spaces (Short Courses, Washington Univ., St. Louis, Mo., 1969–1970) (1972), 271-357. Pure and App. Math., Vol. 8, Dekker, New York Zbl0257.32014MR404716
  29. W.-L. Yee, Simplifying and unifying Bruhat order for B G / B , P G / B , K G / B , and K G / P  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.