A classification theorem on Fano bundles

Roberto Muñoz[1]; Luis E. Solá Conde[1]; Gianluca Occhetta[2]

  • [1] ESCET Departamento de Matemática Aplicada Universidad Rey Juan Carlos Campus de Móstoles C/Tulipan S/N, 28933 Móstoles Madrid (Espagne)
  • [2] Università di Trento Dipartimento di Matematica Via Sommarive 14, I-38123 Povo (TN), (Italie)

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 1, page 341-373
  • ISSN: 0373-0956

Abstract

top
In this paper we classify rank two Fano bundles on Fano manifolds satisfying H 2 ( X , ) H 4 ( X , ) . The classification is obtained via the computation of the nef and pseudoeffective cones of the projectivization ( ) , that allows us to obtain the cohomological invariants of X and . As a by-product we discuss Fano bundles associated to congruences of lines, showing that their varieties of minimal rational tangents may have several linear components.

How to cite

top

Muñoz, Roberto, Solá Conde, Luis E., and Occhetta, Gianluca. "A classification theorem on Fano bundles." Annales de l’institut Fourier 64.1 (2014): 341-373. <http://eudml.org/doc/275606>.

@article{Muñoz2014,
abstract = {In this paper we classify rank two Fano bundles $\{\mathcal\{E\}\}$ on Fano manifolds satisfying $H^2(X,\{\mathbb\{Z\}\})\cong H^4(X,\{\mathbb\{Z\}\})\cong \{\mathbb\{Z\}\}$. The classification is obtained via the computation of the nef and pseudoeffective cones of the projectivization $\{\mathbb\{P\}\}(\{\mathcal\{E\}\})$, that allows us to obtain the cohomological invariants of $X$ and $\{\mathcal\{E\}\}$. As a by-product we discuss Fano bundles associated to congruences of lines, showing that their varieties of minimal rational tangents may have several linear components.},
affiliation = {ESCET Departamento de Matemática Aplicada Universidad Rey Juan Carlos Campus de Móstoles C/Tulipan S/N, 28933 Móstoles Madrid (Espagne); ESCET Departamento de Matemática Aplicada Universidad Rey Juan Carlos Campus de Móstoles C/Tulipan S/N, 28933 Móstoles Madrid (Espagne); Università di Trento Dipartimento di Matematica Via Sommarive 14, I-38123 Povo (TN), (Italie)},
author = {Muñoz, Roberto, Solá Conde, Luis E., Occhetta, Gianluca},
journal = {Annales de l’institut Fourier},
keywords = {vector bundles; Fano manifolds; vector bundle; Fano manifold},
language = {eng},
number = {1},
pages = {341-373},
publisher = {Association des Annales de l’institut Fourier},
title = {A classification theorem on Fano bundles},
url = {http://eudml.org/doc/275606},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Muñoz, Roberto
AU - Solá Conde, Luis E.
AU - Occhetta, Gianluca
TI - A classification theorem on Fano bundles
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 1
SP - 341
EP - 373
AB - In this paper we classify rank two Fano bundles ${\mathcal{E}}$ on Fano manifolds satisfying $H^2(X,{\mathbb{Z}})\cong H^4(X,{\mathbb{Z}})\cong {\mathbb{Z}}$. The classification is obtained via the computation of the nef and pseudoeffective cones of the projectivization ${\mathbb{P}}({\mathcal{E}})$, that allows us to obtain the cohomological invariants of $X$ and ${\mathcal{E}}$. As a by-product we discuss Fano bundles associated to congruences of lines, showing that their varieties of minimal rational tangents may have several linear components.
LA - eng
KW - vector bundles; Fano manifolds; vector bundle; Fano manifold
UR - http://eudml.org/doc/275606
ER -

References

top
  1. V. Ancona, T. Peternell, J. A. Wiśniewski, Fano bundles and splitting theorems on projective spaces and quadrics, Pacific J. Math. 163 (1994), 17-42 Zbl0808.14013MR1256175
  2. M. Andreatta, E. Ballico, J. A. Wiśniewski, Two theorems on elementary contractions, Math. Ann. 297 (1993), 191-198 Zbl0789.14011MR1241801
  3. D. Bazan, E. Mezzetti, On the construction of some Buchsbaum varieties and the Hilbert scheme of elliptic scrolls in 5 , Geom. Dedicata 86 (2001), 191-204 Zbl1042.14022MR1856426
  4. F. Campana, T. Peternell, Projective manifolds whose tangent bundles are numerically effective, Math. Ann. 289 (1991), 169-187 Zbl0729.14032MR1087244
  5. I. A. Cheltsov, Conic bundles with big discriminant loci, Izv. Ross. Akad. Nauk Ser. Mat. 68 (2004), 215-221 Zbl1078.14014MR2058006
  6. M. Cornalba, A remark on the topology of cyclic coverings of algebraic varieties, Boll. Un. Mat. Ital. A (5) 18 (1981), 323-328 Zbl0462.14007MR618353
  7. P. De Poi, Threefolds in 5 with one apparent quadruple point, Comm. Algebra 31 (2003), 1927-1947 Zbl1018.14015MR1972898
  8. L. Ein, N. Shepherd-Barron, Some special Cremona transformations, Amer. J. Math. 111 (1989), 783-800 Zbl0708.14009MR1020829
  9. T. Fujita, Classification theories of polarized varieties, 155 (1990), Cambridge University Press, Cambridge Zbl0743.14004MR1162108
  10. P. Griffiths, J. Harris, Principles of algebraic geometry, (1978), Wiley-Interscience [John Wiley & Sons], New York Zbl0836.14001MR507725
  11. K. Hulek, Stable rank- 2 vector bundles on 2 with c 1 odd, Math. Ann. 242 (1979), 241-266 Zbl0407.32013MR545217
  12. J.-M. Hwang, Geometry of minimal rational curves on Fano manifolds, School on Vanishing Theorems and Effective Results in Algebraic Geometry (Trieste, 2000) 6 (2001), 335-393, Abdus Salam Int. Cent. Theoret. Phys., Trieste Zbl1086.14506MR1919462
  13. J.-M. Hwang, On the degrees of Fano four-folds of Picard number 1, J. Reine Angew. Math. 556 (2003), 225-235 Zbl1016.14022MR1971147
  14. J.-M. Hwang, Deformation of holomorphic maps onto Fano manifolds of second and fourth Betti numbers 1, Ann. Inst. Fourier (Grenoble) 57 (2007), 815-823 Zbl1126.32011MR2336831
  15. J.-M. Hwang, N. Mok, Birationality of the tangent map for minimal rational curves, Asian J. Math. 8 (2004), 51-63 Zbl1072.14015MR2128297
  16. A. Iliev, L. Manivel, Severi varieties and their varieties of reductions, J. Reine Angew. Math. 585 (2005), 93-139 Zbl1083.14060MR2164624
  17. R. Lazarsfeld, A Barth-type theorem for branched coverings of projective space, Math. Ann. 249 (1980), 153-162 Zbl0434.32013MR578722
  18. M. Maruyama, Boundedness of semistable sheaves of small ranks, Nagoya Math. J. 78 (1980), 65-94 Zbl0456.14011MR571438
  19. S. Mukai, Biregular classification of Fano 3 -folds and Fano manifolds of coindex 3 , Proc. Nat. Acad. Sci. U.S.A. 86 (1989), 3000-3002 Zbl0679.14020MR995400
  20. Roberto Muñoz, Gianluca Occhetta, Luis E. Solá Conde, On rank 2 vector bundles on Fano manifolds, (2011) Zbl1295.14038
  21. Roberto Muñoz, Gianluca Occhetta, Luis E. Solá Conde, Rank two Fano bundles on 𝔾 ( 1 , 4 ) , J. Pure Appl. Algebra 216 (2012), 2269-2273 Zbl1262.14051MR2925820
  22. Roberto Muñoz, Gianluca Occhetta, Luis E. Solá Conde, Uniform vector bundles on Fano manifolds and applications, J. Reine Angew. Math. 664 (2012), 141-162 Zbl1271.14058MR2980134
  23. I. Niven, Irrational numbers, (1956), The Mathematical Association of America. John Wiley and Sons, Inc., New York, N.Y. Zbl0070.27101MR80123
  24. C. Novelli, Gianluca Occhetta, Projective manifolds containing a large linear subspace with nef normal bundle, Michigan Math. J. 60 (2011), 441-462 Zbl1229.14015MR2825270
  25. C. Okonek, M. Schneider, H. Spindler, Vector bundles on complex projective spaces, (1980), Birkhäuser, Boston, Mass. Zbl0438.32016MR561910
  26. G. Ottaviani, On Cayley bundles on the five-dimensional quadric, Boll. Un. Mat. Ital. A (7) 4 (1990), 87-100 Zbl0722.14006MR1047517
  27. M. Reid, The complete intersection of two or more quadrics, (1972) 
  28. V. G. Sarkisov, On conic bundle structures, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), 371-408, 432 Zbl0593.14034MR651652
  29. E. Sato, Projective manifolds swept out by large-dimensional linear spaces, Tohoku Math. J. (2) 49 (1997), 299-321 Zbl0917.14026MR1464179
  30. Ignacio Sols, Michał Szurek, Jarosław A. Wiśniewski, Rank- 2 Fano bundles over a smooth quadric Q 3 , Pacific J. Math. 148 (1991), 153-159 Zbl0733.14006MR1091535
  31. Michał Szurek, Jarosław A. Wiśniewski, Fano bundles over 3 and 3 , Pacific J. Math. 141 (1990), 197-208 Zbl0705.14016
  32. Michał Szurek, Jarosław A. Wiśniewski, On Fano manifolds, which are k -bundles over 2 , Nagoya Math. J. 120 (1990), 89-101 Zbl0728.14037MR1086572
  33. Jarosław A. Wiśniewski, On contractions of extremal rays of Fano manifolds, J. Reine Angew. Math. 417 (1991), 141-157 Zbl0721.14023MR1103910
  34. F. L. Zak, Tangents and secants of algebraic varieties, 127 (1993), American Mathematical Society, Providence, RI Zbl0795.14018MR1234494

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.