A classification theorem on Fano bundles
Roberto Muñoz[1]; Luis E. Solá Conde[1]; Gianluca Occhetta[2]
- [1] ESCET Departamento de Matemática Aplicada Universidad Rey Juan Carlos Campus de Móstoles C/Tulipan S/N, 28933 Móstoles Madrid (Espagne)
- [2] Università di Trento Dipartimento di Matematica Via Sommarive 14, I-38123 Povo (TN), (Italie)
Annales de l’institut Fourier (2014)
- Volume: 64, Issue: 1, page 341-373
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMuñoz, Roberto, Solá Conde, Luis E., and Occhetta, Gianluca. "A classification theorem on Fano bundles." Annales de l’institut Fourier 64.1 (2014): 341-373. <http://eudml.org/doc/275606>.
@article{Muñoz2014,
abstract = {In this paper we classify rank two Fano bundles $\{\mathcal\{E\}\}$ on Fano manifolds satisfying $H^2(X,\{\mathbb\{Z\}\})\cong H^4(X,\{\mathbb\{Z\}\})\cong \{\mathbb\{Z\}\}$. The classification is obtained via the computation of the nef and pseudoeffective cones of the projectivization $\{\mathbb\{P\}\}(\{\mathcal\{E\}\})$, that allows us to obtain the cohomological invariants of $X$ and $\{\mathcal\{E\}\}$. As a by-product we discuss Fano bundles associated to congruences of lines, showing that their varieties of minimal rational tangents may have several linear components.},
affiliation = {ESCET Departamento de Matemática Aplicada Universidad Rey Juan Carlos Campus de Móstoles C/Tulipan S/N, 28933 Móstoles Madrid (Espagne); ESCET Departamento de Matemática Aplicada Universidad Rey Juan Carlos Campus de Móstoles C/Tulipan S/N, 28933 Móstoles Madrid (Espagne); Università di Trento Dipartimento di Matematica Via Sommarive 14, I-38123 Povo (TN), (Italie)},
author = {Muñoz, Roberto, Solá Conde, Luis E., Occhetta, Gianluca},
journal = {Annales de l’institut Fourier},
keywords = {vector bundles; Fano manifolds; vector bundle; Fano manifold},
language = {eng},
number = {1},
pages = {341-373},
publisher = {Association des Annales de l’institut Fourier},
title = {A classification theorem on Fano bundles},
url = {http://eudml.org/doc/275606},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Muñoz, Roberto
AU - Solá Conde, Luis E.
AU - Occhetta, Gianluca
TI - A classification theorem on Fano bundles
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 1
SP - 341
EP - 373
AB - In this paper we classify rank two Fano bundles ${\mathcal{E}}$ on Fano manifolds satisfying $H^2(X,{\mathbb{Z}})\cong H^4(X,{\mathbb{Z}})\cong {\mathbb{Z}}$. The classification is obtained via the computation of the nef and pseudoeffective cones of the projectivization ${\mathbb{P}}({\mathcal{E}})$, that allows us to obtain the cohomological invariants of $X$ and ${\mathcal{E}}$. As a by-product we discuss Fano bundles associated to congruences of lines, showing that their varieties of minimal rational tangents may have several linear components.
LA - eng
KW - vector bundles; Fano manifolds; vector bundle; Fano manifold
UR - http://eudml.org/doc/275606
ER -
References
top- V. Ancona, T. Peternell, J. A. Wiśniewski, Fano bundles and splitting theorems on projective spaces and quadrics, Pacific J. Math. 163 (1994), 17-42 Zbl0808.14013MR1256175
- M. Andreatta, E. Ballico, J. A. Wiśniewski, Two theorems on elementary contractions, Math. Ann. 297 (1993), 191-198 Zbl0789.14011MR1241801
- D. Bazan, E. Mezzetti, On the construction of some Buchsbaum varieties and the Hilbert scheme of elliptic scrolls in , Geom. Dedicata 86 (2001), 191-204 Zbl1042.14022MR1856426
- F. Campana, T. Peternell, Projective manifolds whose tangent bundles are numerically effective, Math. Ann. 289 (1991), 169-187 Zbl0729.14032MR1087244
- I. A. Cheltsov, Conic bundles with big discriminant loci, Izv. Ross. Akad. Nauk Ser. Mat. 68 (2004), 215-221 Zbl1078.14014MR2058006
- M. Cornalba, A remark on the topology of cyclic coverings of algebraic varieties, Boll. Un. Mat. Ital. A (5) 18 (1981), 323-328 Zbl0462.14007MR618353
- P. De Poi, Threefolds in with one apparent quadruple point, Comm. Algebra 31 (2003), 1927-1947 Zbl1018.14015MR1972898
- L. Ein, N. Shepherd-Barron, Some special Cremona transformations, Amer. J. Math. 111 (1989), 783-800 Zbl0708.14009MR1020829
- T. Fujita, Classification theories of polarized varieties, 155 (1990), Cambridge University Press, Cambridge Zbl0743.14004MR1162108
- P. Griffiths, J. Harris, Principles of algebraic geometry, (1978), Wiley-Interscience [John Wiley & Sons], New York Zbl0836.14001MR507725
- K. Hulek, Stable rank- vector bundles on with odd, Math. Ann. 242 (1979), 241-266 Zbl0407.32013MR545217
- J.-M. Hwang, Geometry of minimal rational curves on Fano manifolds, School on Vanishing Theorems and Effective Results in Algebraic Geometry (Trieste, 2000) 6 (2001), 335-393, Abdus Salam Int. Cent. Theoret. Phys., Trieste Zbl1086.14506MR1919462
- J.-M. Hwang, On the degrees of Fano four-folds of Picard number 1, J. Reine Angew. Math. 556 (2003), 225-235 Zbl1016.14022MR1971147
- J.-M. Hwang, Deformation of holomorphic maps onto Fano manifolds of second and fourth Betti numbers 1, Ann. Inst. Fourier (Grenoble) 57 (2007), 815-823 Zbl1126.32011MR2336831
- J.-M. Hwang, N. Mok, Birationality of the tangent map for minimal rational curves, Asian J. Math. 8 (2004), 51-63 Zbl1072.14015MR2128297
- A. Iliev, L. Manivel, Severi varieties and their varieties of reductions, J. Reine Angew. Math. 585 (2005), 93-139 Zbl1083.14060MR2164624
- R. Lazarsfeld, A Barth-type theorem for branched coverings of projective space, Math. Ann. 249 (1980), 153-162 Zbl0434.32013MR578722
- M. Maruyama, Boundedness of semistable sheaves of small ranks, Nagoya Math. J. 78 (1980), 65-94 Zbl0456.14011MR571438
- S. Mukai, Biregular classification of Fano -folds and Fano manifolds of coindex , Proc. Nat. Acad. Sci. U.S.A. 86 (1989), 3000-3002 Zbl0679.14020MR995400
- Roberto Muñoz, Gianluca Occhetta, Luis E. Solá Conde, On rank vector bundles on Fano manifolds, (2011) Zbl1295.14038
- Roberto Muñoz, Gianluca Occhetta, Luis E. Solá Conde, Rank two Fano bundles on , J. Pure Appl. Algebra 216 (2012), 2269-2273 Zbl1262.14051MR2925820
- Roberto Muñoz, Gianluca Occhetta, Luis E. Solá Conde, Uniform vector bundles on Fano manifolds and applications, J. Reine Angew. Math. 664 (2012), 141-162 Zbl1271.14058MR2980134
- I. Niven, Irrational numbers, (1956), The Mathematical Association of America. John Wiley and Sons, Inc., New York, N.Y. Zbl0070.27101MR80123
- C. Novelli, Gianluca Occhetta, Projective manifolds containing a large linear subspace with nef normal bundle, Michigan Math. J. 60 (2011), 441-462 Zbl1229.14015MR2825270
- C. Okonek, M. Schneider, H. Spindler, Vector bundles on complex projective spaces, (1980), Birkhäuser, Boston, Mass. Zbl0438.32016MR561910
- G. Ottaviani, On Cayley bundles on the five-dimensional quadric, Boll. Un. Mat. Ital. A (7) 4 (1990), 87-100 Zbl0722.14006MR1047517
- M. Reid, The complete intersection of two or more quadrics, (1972)
- V. G. Sarkisov, On conic bundle structures, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), 371-408, 432 Zbl0593.14034MR651652
- E. Sato, Projective manifolds swept out by large-dimensional linear spaces, Tohoku Math. J. (2) 49 (1997), 299-321 Zbl0917.14026MR1464179
- Ignacio Sols, Michał Szurek, Jarosław A. Wiśniewski, Rank- Fano bundles over a smooth quadric , Pacific J. Math. 148 (1991), 153-159 Zbl0733.14006MR1091535
- Michał Szurek, Jarosław A. Wiśniewski, Fano bundles over and , Pacific J. Math. 141 (1990), 197-208 Zbl0705.14016
- Michał Szurek, Jarosław A. Wiśniewski, On Fano manifolds, which are -bundles over , Nagoya Math. J. 120 (1990), 89-101 Zbl0728.14037MR1086572
- Jarosław A. Wiśniewski, On contractions of extremal rays of Fano manifolds, J. Reine Angew. Math. 417 (1991), 141-157 Zbl0721.14023MR1103910
- F. L. Zak, Tangents and secants of algebraic varieties, 127 (1993), American Mathematical Society, Providence, RI Zbl0795.14018MR1234494
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.