On the representation theory of braid groups

Ivan Marin[1]

  • [1] LAMFA Université de Picardie-Jules Verne 33 rue Saint-Leu 80039 Amiens Cedex 1 France

Annales mathématiques Blaise Pascal (2013)

  • Volume: 20, Issue: 2, page 193-260
  • ISSN: 1259-1734

Abstract

top
This work presents an approach towards the representation theory of the braid groups B n . We focus on finite-dimensional representations over the field of Laurent series which can be obtained from representations of infinitesimal braids, with the help of Drinfeld associators. We set a dictionary between representation-theoretic properties of these two structures, and tools to describe the representations thus obtained. We give an explanation for the frequent apparition of unitary structures on classical representations. We introduce new objects — varieties of braided extensions, infinitesimal quotients — which are useful in this setting, and analyse several of their properties. Finally, we review the most classical representations of the braid groups, show how they can be obtained by our methods and how this setting enriches our understanding of them.

How to cite

top

Marin, Ivan. "On the representation theory of braid groups." Annales mathématiques Blaise Pascal 20.2 (2013): 193-260. <http://eudml.org/doc/275607>.

@article{Marin2013,
abstract = {This work presents an approach towards the representation theory of the braid groups $B_n$. We focus on finite-dimensional representations over the field of Laurent series which can be obtained from representations of infinitesimal braids, with the help of Drinfeld associators. We set a dictionary between representation-theoretic properties of these two structures, and tools to describe the representations thus obtained. We give an explanation for the frequent apparition of unitary structures on classical representations. We introduce new objects — varieties of braided extensions, infinitesimal quotients — which are useful in this setting, and analyse several of their properties. Finally, we review the most classical representations of the braid groups, show how they can be obtained by our methods and how this setting enriches our understanding of them.},
affiliation = {LAMFA Université de Picardie-Jules Verne 33 rue Saint-Leu 80039 Amiens Cedex 1 France},
author = {Marin, Ivan},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Linear representations; Braid groups; representations; braid groups; classical braid representations; Drinfeld associators; infinitesimal braids; completions; power series},
language = {eng},
month = {7},
number = {2},
pages = {193-260},
publisher = {Annales mathématiques Blaise Pascal},
title = {On the representation theory of braid groups},
url = {http://eudml.org/doc/275607},
volume = {20},
year = {2013},
}

TY - JOUR
AU - Marin, Ivan
TI - On the representation theory of braid groups
JO - Annales mathématiques Blaise Pascal
DA - 2013/7//
PB - Annales mathématiques Blaise Pascal
VL - 20
IS - 2
SP - 193
EP - 260
AB - This work presents an approach towards the representation theory of the braid groups $B_n$. We focus on finite-dimensional representations over the field of Laurent series which can be obtained from representations of infinitesimal braids, with the help of Drinfeld associators. We set a dictionary between representation-theoretic properties of these two structures, and tools to describe the representations thus obtained. We give an explanation for the frequent apparition of unitary structures on classical representations. We introduce new objects — varieties of braided extensions, infinitesimal quotients — which are useful in this setting, and analyse several of their properties. Finally, we review the most classical representations of the braid groups, show how they can be obtained by our methods and how this setting enriches our understanding of them.
LA - eng
KW - Linear representations; Braid groups; representations; braid groups; classical braid representations; Drinfeld associators; infinitesimal braids; completions; power series
UR - http://eudml.org/doc/275607
ER -

References

top
  1. E. Artin, Theorie der Zöpfe, Abhandlungen Hamburg 4 (1925), 47-72 MR3069440
  2. M. Artin, On the Solutions of Analytic Equations, Invent. Math. 5 (1968), 277-291 Zbl0172.05301MR232018
  3. J. Bellaïche, A propos d’un lemme de Ribet, Rend. Semin. Mat. Univ. Padova 109 (2003), 45-62 Zbl1048.20032MR1997986
  4. J. Bellaïche, P. Graftieaux, Représentations sur un anneau de valuation discrète complet, Math. Ann. 334 (2006), 465-488 Zbl1178.20040MR2207872
  5. J. Birman, Braids, links, and mapping class groups, Annals of Mathematics Studies 82, (1975), Princeton University Press and University of Tokyo Press, Princeton, Tokyo Zbl0305.57013MR375281
  6. M. Broué, G. Malle, Zyklotomische Heckealgebren, Astérisque 212 (1993), 119-189 Zbl0835.20064MR1235834
  7. M. Broué, G. Malle, R. Rouquier, Complex reflection groups, braid groups, Hecke algebras, J. Reine Angew. Math. 500 (1998), 127-190 Zbl0921.20046MR1637497
  8. C. Chevalley, Théorie des groupes de Lie, vol. 2-3, (1961), Hermann, Paris Zbl0186.33104
  9. F.R. Cohen, S. Prassidis, On injective homomorphisms for pure braid groups, and associated Lie algebras, J. Algebra 298 (2006), 363-370 Zbl1134.20039MR2217620
  10. D.J. Collins, Relations among the squares of the generators of the braid group, Invent. Math. 117 (1994), 525-529 Zbl0822.20040MR1283728
  11. W. Crawley-Boevey, On matrices in prescribed conjugacy classes with no common invariant subspace and sum zero, Duke Math. J. 118 (2003), 339-352 Zbl1046.15013MR1980997
  12. V.G. Drinfeld, On quasitriangular quasi-Hopf algebras and a group closely connected with G al ( ¯ / ) , Leningrad Math. J. 2 (1991), 829-860 Zbl0728.16021MR1080203
  13. D. Eisenbud, Commutative algebra with a view toward algebraic geometry, (1995), Springer-Verlag, Heidelberg Zbl0819.13001MR1322960
  14. E. Formanek, Braid group representations of low degree, Proc. London Math. Soc. 73 (1996), 279-322 Zbl0855.20038MR1397691
  15. T. Kohno, Série de Poincaré-Koszul associée aux groupes de tresses pures, Inven. Math. 82 (19!5), 57-76 Zbl0574.55009MR808109
  16. T. Kohno, Linear representations of braid groups and classical Yang-Baxter equations, Contemp. Math. 78 (1988), 339-363 Zbl0661.20026MR975088
  17. T.Q.T. Le, J. Murakami, The universal Vassiliev-Kontsevitch invariant for framed oriented links, Compositio Math. 102 (1996), 41-64 Zbl0851.57007MR1394520
  18. D.D. Long, Constructing representations of the braid groups, Comm. in analysis and geometry 2 (1994), 217-238 Zbl0845.20028MR1312687
  19. I. Marin, On KZ-systems which are irreducible under the action of the symmetric group, C. R. Acad. Sci. Paris Sér. I 333 (2001), 517-522 Zbl1058.32008MR1860922
  20. I. Marin, Représentations linéaires des tresses infinitésimales, (2001) 
  21. I. Marin, Caractérisations de la représentation de Burau, Expo. Math. 21 (2003), 263-278 Zbl1064.20042MR2006011
  22. I. Marin, Infinitesimal Hecke Algebras, Comptes Rendus Mathématiques Série I 337 (2003), 297-302 Zbl1056.20004MR2016978
  23. I. Marin, On the representation theory of braid groups, Preprint Université d’Evry (2003) 
  24. I. Marin, Quotients infinitésimaux du groupe de tresses, Ann. Inst. Fourier (Grenoble) 53 (2003), 1323-1364 Zbl1063.20042MR2032936
  25. I. Marin, Irréductibilité générique des produits tensoriels de monodromies, Bull. Soc. Math. Fr. 132 (2004), 201-232 Zbl1073.20003MR2075566
  26. I. Marin, Caractères de rigidité du groupe de Grothendieck-Teichmüller, Compositio Math. 142 (2006), 657-678 Zbl1133.14027MR2231196
  27. I. Marin, Monodromie algébrique des groupes d’Artin diédraux, J. Algebra 303 (2006), 97-132 Zbl1151.20003MR2253655
  28. I. Marin, L’algèbre de Lie des transpositions, J. Algebra 310 (2007), 742-774 Zbl1171.20010MR2308178
  29. I. Marin, Sur les représentations de Krammer génériques, Ann. Inst. Fourier (Grenoble) 57 (2007), 1883-1925 Zbl1183.20036MR2377890
  30. I. Marin, Braids inside the Birman-Wenzl-Murakami algebra, Algebraic Geometric Topology 10 (2010), 1865-1886 Zbl1235.20037MR2728478
  31. I. Marin, The cubic Hecke algebra on at most 5 strands, J. Pure Applied Algebra 216 (2012), 2754-2782 Zbl1266.20006MR2943756
  32. K. Ribet, A modular construction of unramified extensions of ( μ p ) , Invent. Math. 34 (1976), 151-162 Zbl0338.12003MR419403
  33. G.C. Shephard, J.A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274-304 Zbl0055.14305MR59914
  34. C.C. Squier, The Burau Representation is Unitary, Proc. Am. Math. Soc. 90 (1984), 199-202 Zbl0542.20022MR727232
  35. I. Sysoeva, On irreducible representations of braid groups, (1999) MR2699543
  36. I. Sysoeva, Dimension n representations of the braid groups on n strings, J. Algebra 243 (2001), 518-538 Zbl1008.20029MR1850645
  37. J. Tits, Normalisateurs de tores I : Groupes de Coxeter étendus, J. Algebra 4 (1966), 96-116 Zbl0145.24703MR206117
  38. V.A. Vassiliev, Complements of discriminants of smooth maps : topology and applications, Translation of mathematical monographs 98 (1992) Zbl0762.55001MR1168473

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.