The universal Vassiliev-Kontsevich invariant for framed oriented links

Tu Quoc Thang Le; Jun Murakami

Compositio Mathematica (1996)

  • Volume: 102, Issue: 1, page 41-64
  • ISSN: 0010-437X

How to cite

top

Le, Tu Quoc Thang, and Murakami, Jun. "The universal Vassiliev-Kontsevich invariant for framed oriented links." Compositio Mathematica 102.1 (1996): 41-64. <http://eudml.org/doc/90447>.

@article{Le1996,
author = {Le, Tu Quoc Thang, Murakami, Jun},
journal = {Compositio Mathematica},
keywords = {Reshetikhin-Turaev functor; tangles; Kontsevich integral; framed oriented links; Vassiliev-Kontsevich invariant},
language = {eng},
number = {1},
pages = {41-64},
publisher = {Kluwer Academic Publishers},
title = {The universal Vassiliev-Kontsevich invariant for framed oriented links},
url = {http://eudml.org/doc/90447},
volume = {102},
year = {1996},
}

TY - JOUR
AU - Le, Tu Quoc Thang
AU - Murakami, Jun
TI - The universal Vassiliev-Kontsevich invariant for framed oriented links
JO - Compositio Mathematica
PY - 1996
PB - Kluwer Academic Publishers
VL - 102
IS - 1
SP - 41
EP - 64
LA - eng
KW - Reshetikhin-Turaev functor; tangles; Kontsevich integral; framed oriented links; Vassiliev-Kontsevich invariant
UR - http://eudml.org/doc/90447
ER -

References

top
  1. [Al-Co] Altschuler, D. and Coste, A.: Quasi-quantum groups, knots, three-manifolds, and topological field theoryCommun. Math. Phys.150 (1992) pp. 83-107. Zbl0773.57004MR1188498
  2. [Ar] Arnold, V.: Talk at ECM, Paris1990. 
  3. [Baez] Baez, J.C.: Link invariants of finite type and perturbation theory, Wellesley college preprint, 1992. Zbl0792.57002MR1193625
  4. [Bar1] Bar-Natan, Dror: On the Vassiliev knot invariants, Harvard University preprint, August 1992. MR1318886
  5. [Bar2] Bar-Natan, Dror: Vassiliev invariants of homotopy string links, Harvard University preprint, 1993. 
  6. [Bir] Birman, J.S.: New points of view in knot theoryBull. Amer. Math. Soc.28 (1993) No 2, 253-287. 225-270. Zbl0785.57001MR1191478
  7. [Bir2] Birman, J.: Braids, links, and mapping class groups, Princeton University Press, 1974. Zbl0305.57013MR375281
  8. [Bir-Lin] Birman, J.S. and Lin, X.S.: Knot polynomials and Vassiliev's invariants, Invent. Math.111 (1993) pp. 225-270. Zbl0812.57011MR1198809
  9. [Car] Cartier, P.: Construction combinatoire des invariants de Vassiliev-Kontsevich des nœuds, C. R. Acad. Sci. Paris, t. 316 (1993) series 1, pp. 1205-1210F. Zbl0791.57006
  10. [Drin1] Drinfel'd, V.G.: On Quasi-Hopf algebrasLeningrad Math. J.1 (1990) 1419-1457. Zbl0718.16033MR1047964
  11. [Drin2] Drinfel'd, V.G.: On quasi-triangular quasi-Hopf algebras and a group closely connected with Gal(Q/Q)Leningrad Math. J.2 (1990) 829-860. Zbl0728.16021MR1080203
  12. [Drin3] Drinfel'd, V.G.: Quantum groups, Proceeding of the ICM, Berkerley, 1986, 798-820. Zbl0667.16003MR934283
  13. [F-dV] Freudenthal, H.: de Vries, Linear Lie Groups, Academic Press, New YorkLondonTorontoSydneySan Francisco, 1969. Zbl0377.22001MR260926
  14. [Jim] Jimbo, M.: A q-difference analogue of U(g) and the Yang-Baxter equation. Lett. Math. Phys.10 (1985) 63-69. Zbl0587.17004MR797001
  15. [Kas] Kassel, C.: Quantum groups, to appear in the series Graduate Texts in Mathematics, Springer-Verlag, in 1994. Zbl0808.17003MR1321145
  16. [Kauff] Kauffman, L.: Vassiliev invariants and the loop states in quantum gravity, University of Illinois at Chicago preprint 1993, to appear in Knots and quantum gravity, Oxford U. Press. Zbl0884.57009MR1309915
  17. [Koh] Kohno, T.: Monodromy representations of braid groups and Yang-Baxter equations, Ann. Inst. Fourier, 37 (1987) 139-160. Zbl0634.58040MR927394
  18. [Kont1] Kontsevich, M.: Vassiliev's knot invariants, Adv. Sov. Math., 16, part 2, (1993) 137-150. Zbl0839.57006MR1237836
  19. [Kont2] Kontsevich, M.: Talk at ECM, Paris1990. 
  20. [Le-Mu1] Le, T.Q.T. and Murakami, J.: Kontsevich's integral for Homfly polynomial and relation between values of multiple zeta functions, Max-Planck Institut für Mathematik preprint MPI/93-26, Bonn1993. 
  21. [Le-Mu2] Le, T.Q.T. and Murakami, J.: Kontsevich's integral for Kauffman polynomial, Max-Planck Institut für Mathematik preprint , Bonn1993. 
  22. [Le-Mu3] Le, T.Q.T. and Murakami, J.: Representation of the Category of Tangles by Kontsevich's iterated integral, Max-Planck Institut für Mathematik preprint, Bonn1993. 
  23. [Lin] Lin, X.S.: Vertex models, quantum groups and Vassiliev's knot invariants, Columbia University, preprint 1992. Zbl1179.57021
  24. [Piu1] Piunikhin, S.: Combinatorial expression for universal Vassiliev link invariant, Harvard University preprint, 1993. Zbl0828.57007MR1264316
  25. [Piu2] Piunikhin, S.: Weights of Feynman diagrams, link polynomials and Vassilev knot invariants, MoscowState University preprint, 1992. 
  26. [Re-Tu] Reshetikhin, N. Yu. and Turaev, V.G.: Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys., 127 (1990) pp. 262-288. Zbl0768.57003MR1036112
  27. [So] Sossinsky, A.B.: Feynman diagrams and Vassiliev invariants, IHES preprint IHES/M/92/13,1992. 
  28. [St] Stanford, T.: Finite type invariants of knots, links, and graphs, Columbia University preprint, 1992. MR1404922
  29. [Tu1] Turaev, V.G.: Operator invariants of tangles and R-matrices, Math. USSR Izvestija35 (1990) pp. 411-444. Zbl0707.57003MR1024455
  30. [Tu2] Turaev, V.G.: The Yang-Baxter equations and invariants of links, Invent. Math.92 (1988) pp. 527-553. Zbl0648.57003MR939474
  31. [Va] Vassiliev, V.: Cohomology of knot spaces, Theory of singularities and its applications (Providence (Arnold, V. I. ed.), Amer. Math. Soc., Providence, 1990. MR1089670
  32. [Za] Zagier, D.: Values of multiple zeta functions and applications, MPI für Mathematik, preprint, Bonn1993, to appear in Proceeding of ECM. MR1296720

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.