Regularity of sets with constant intrinsic normal in a class of Carnot groups
Marco Marchi[1]
- [1] Dipartimento di Matematica Università degli Studi di Milano via Cesare Saldini 50 20133 Milano MI Italy
Annales de l’institut Fourier (2014)
- Volume: 64, Issue: 2, page 429-455
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMarchi, Marco. "Regularity of sets with constant intrinsic normal in a class of Carnot groups." Annales de l’institut Fourier 64.2 (2014): 429-455. <http://eudml.org/doc/275617>.
@article{Marchi2014,
abstract = {In this Note, we define a class of stratified Lie groups of arbitrary step (that are called “groups of type $\star $” throughout the paper), and we prove that, in these groups, sets with constant intrinsic normal are vertical halfspaces. As a consequence, the reduced boundary of a set of finite intrinsic perimeter in a group of type $\star $ is rectifiable in the intrinsic sense (De Giorgi’s rectifiability theorem). This result extends the previous one proved by Franchi, Serapioni & Serra Cassano in step 2 groups.},
affiliation = {Dipartimento di Matematica Università degli Studi di Milano via Cesare Saldini 50 20133 Milano MI Italy},
author = {Marchi, Marco},
journal = {Annales de l’institut Fourier},
keywords = {Carnot groups; intrinsic perimeter; intrinsic rectifiability},
language = {eng},
number = {2},
pages = {429-455},
publisher = {Association des Annales de l’institut Fourier},
title = {Regularity of sets with constant intrinsic normal in a class of Carnot groups},
url = {http://eudml.org/doc/275617},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Marchi, Marco
TI - Regularity of sets with constant intrinsic normal in a class of Carnot groups
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 2
SP - 429
EP - 455
AB - In this Note, we define a class of stratified Lie groups of arbitrary step (that are called “groups of type $\star $” throughout the paper), and we prove that, in these groups, sets with constant intrinsic normal are vertical halfspaces. As a consequence, the reduced boundary of a set of finite intrinsic perimeter in a group of type $\star $ is rectifiable in the intrinsic sense (De Giorgi’s rectifiability theorem). This result extends the previous one proved by Franchi, Serapioni & Serra Cassano in step 2 groups.
LA - eng
KW - Carnot groups; intrinsic perimeter; intrinsic rectifiability
UR - http://eudml.org/doc/275617
ER -
References
top- L. Ambrosio, B. Kleiner, E. Le Donne, Rectifiability of Sets of Finite Perimeter in Carnot Groups: Existence of a Tangent Hyperplane, J. Geom. Anal. 19 (2009), 509-540 Zbl1187.28008MR2496564
- A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Stratified Lie Groups and Potential Theory for their Sub-Laplacians, (2007), Springer, New York Zbl1128.43001MR2363343
- E. De Giorgi, Nuovi teoremi relativi alle misure -dimensionali in uno spazio ad dimensioni, Ricerche Mat. 4 (1955), 95-113 Zbl0066.29903MR74499
- H. W. Eves, Elementary matrix theory, (1980), Courier Dover Publications, New York Zbl0497.15002MR649067
- G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161-207 Zbl0312.35026MR494315
- G. B. Folland, E. M. Stein, Hardy spaces on homogeneous groups, (1982), Princeton University Press, Princeton Zbl0508.42025MR657581
- B. Franchi, R. Serapioni, F. Serra Cassano, Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields, Houston J. Math. 22 (1996), 859-889 Zbl0876.49014MR1437714
- B. Franchi, R. Serapioni, F. Serra Cassano, On the Structure of Finite Perimeter Sets in Step 2 Carnot Groups, J. Geom. Anal. 13 (2003), 421-466 Zbl1064.49033MR1984849
- B. Franchi, R. Serapioni, F. Serra Cassano, Regular hypersurfaces, intrinsic perimeter and implicit function theorem in Carnot groups, Comm. Anal. Geom. 11 (2003), 909-944 Zbl1077.22008MR2032504
- N. Garofalo, D. M. Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math. 49 (1996), 1081-1144 Zbl0880.35032MR1404326
- V. V. Gorbatsevich, A. L. Onishchik, E. B. Vinberg, Foundations of Lie Theory and Lie Transformation Groups, (1997), Springer, Berlin Zbl0781.22003MR1631937
- A. Korányi, H. M. Reimann, Foundation for the theory of quasiconformal mappings on the Heisenberg group, Advances in Mathematics 111 (1995), 1-87 Zbl0876.30019MR886958
- V. Magnani, Characteristic points, rectifiability and perimeter measure on stratified groups, J. Eur. Math. Soc. 8 (2006), 585-609 Zbl1107.22004MR2262196
- J. Mitchell, On Carnot-Carathéodory metrics, J. Differ. Geom. 21 (1985), 35-45 Zbl0554.53023MR806700
- R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications, 91 (2002), AMS, Providence RI Zbl1044.53022MR1867362
- A. Nagel, E. M. Stein, S. Wainger, Balls and metrics defined by vector fields I: Basic properties, Acta Mathematica 155 (1985), 103-147 Zbl0578.32044MR793239
- P. Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. 129 (1989), 1-60 Zbl0678.53042MR979599
- N. Th. Varopoulos, L. Saloff-Coste, T. Coulhon, Analysis and Geometry on Groups, (1992), Cambridge University Press, Cambridge Zbl1179.22009MR1218884
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.