Regularity of sets with constant intrinsic normal in a class of Carnot groups

Marco Marchi[1]

  • [1] Dipartimento di Matematica Università degli Studi di Milano via Cesare Saldini 50 20133 Milano MI Italy

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 2, page 429-455
  • ISSN: 0373-0956

Abstract

top
In this Note, we define a class of stratified Lie groups of arbitrary step (that are called “groups of type ” throughout the paper), and we prove that, in these groups, sets with constant intrinsic normal are vertical halfspaces. As a consequence, the reduced boundary of a set of finite intrinsic perimeter in a group of type is rectifiable in the intrinsic sense (De Giorgi’s rectifiability theorem). This result extends the previous one proved by Franchi, Serapioni & Serra Cassano in step 2 groups.

How to cite

top

Marchi, Marco. "Regularity of sets with constant intrinsic normal in a class of Carnot groups." Annales de l’institut Fourier 64.2 (2014): 429-455. <http://eudml.org/doc/275617>.

@article{Marchi2014,
abstract = {In this Note, we define a class of stratified Lie groups of arbitrary step (that are called “groups of type $\star $” throughout the paper), and we prove that, in these groups, sets with constant intrinsic normal are vertical halfspaces. As a consequence, the reduced boundary of a set of finite intrinsic perimeter in a group of type $\star $ is rectifiable in the intrinsic sense (De Giorgi’s rectifiability theorem). This result extends the previous one proved by Franchi, Serapioni & Serra Cassano in step 2 groups.},
affiliation = {Dipartimento di Matematica Università degli Studi di Milano via Cesare Saldini 50 20133 Milano MI Italy},
author = {Marchi, Marco},
journal = {Annales de l’institut Fourier},
keywords = {Carnot groups; intrinsic perimeter; intrinsic rectifiability},
language = {eng},
number = {2},
pages = {429-455},
publisher = {Association des Annales de l’institut Fourier},
title = {Regularity of sets with constant intrinsic normal in a class of Carnot groups},
url = {http://eudml.org/doc/275617},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Marchi, Marco
TI - Regularity of sets with constant intrinsic normal in a class of Carnot groups
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 2
SP - 429
EP - 455
AB - In this Note, we define a class of stratified Lie groups of arbitrary step (that are called “groups of type $\star $” throughout the paper), and we prove that, in these groups, sets with constant intrinsic normal are vertical halfspaces. As a consequence, the reduced boundary of a set of finite intrinsic perimeter in a group of type $\star $ is rectifiable in the intrinsic sense (De Giorgi’s rectifiability theorem). This result extends the previous one proved by Franchi, Serapioni & Serra Cassano in step 2 groups.
LA - eng
KW - Carnot groups; intrinsic perimeter; intrinsic rectifiability
UR - http://eudml.org/doc/275617
ER -

References

top
  1. L. Ambrosio, B. Kleiner, E. Le Donne, Rectifiability of Sets of Finite Perimeter in Carnot Groups: Existence of a Tangent Hyperplane, J. Geom. Anal. 19 (2009), 509-540 Zbl1187.28008MR2496564
  2. A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Stratified Lie Groups and Potential Theory for their Sub-Laplacians, (2007), Springer, New York Zbl1128.43001MR2363343
  3. E. De Giorgi, Nuovi teoremi relativi alle misure ( r - 1 ) -dimensionali in uno spazio ad r dimensioni, Ricerche Mat. 4 (1955), 95-113 Zbl0066.29903MR74499
  4. H. W. Eves, Elementary matrix theory, (1980), Courier Dover Publications, New York Zbl0497.15002MR649067
  5. G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161-207 Zbl0312.35026MR494315
  6. G. B. Folland, E. M. Stein, Hardy spaces on homogeneous groups, (1982), Princeton University Press, Princeton Zbl0508.42025MR657581
  7. B. Franchi, R. Serapioni, F. Serra Cassano, Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields, Houston J. Math. 22 (1996), 859-889 Zbl0876.49014MR1437714
  8. B. Franchi, R. Serapioni, F. Serra Cassano, On the Structure of Finite Perimeter Sets in Step 2 Carnot Groups, J. Geom. Anal. 13 (2003), 421-466 Zbl1064.49033MR1984849
  9. B. Franchi, R. Serapioni, F. Serra Cassano, Regular hypersurfaces, intrinsic perimeter and implicit function theorem in Carnot groups, Comm. Anal. Geom. 11 (2003), 909-944 Zbl1077.22008MR2032504
  10. N. Garofalo, D. M. Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math. 49 (1996), 1081-1144 Zbl0880.35032MR1404326
  11. V. V. Gorbatsevich, A. L. Onishchik, E. B. Vinberg, Foundations of Lie Theory and Lie Transformation Groups, (1997), Springer, Berlin Zbl0781.22003MR1631937
  12. A. Korányi, H. M. Reimann, Foundation for the theory of quasiconformal mappings on the Heisenberg group, Advances in Mathematics 111 (1995), 1-87 Zbl0876.30019MR886958
  13. V. Magnani, Characteristic points, rectifiability and perimeter measure on stratified groups, J. Eur. Math. Soc. 8 (2006), 585-609 Zbl1107.22004MR2262196
  14. J. Mitchell, On Carnot-Carathéodory metrics, J. Differ. Geom. 21 (1985), 35-45 Zbl0554.53023MR806700
  15. R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications, 91 (2002), AMS, Providence RI Zbl1044.53022MR1867362
  16. A. Nagel, E. M. Stein, S. Wainger, Balls and metrics defined by vector fields I: Basic properties, Acta Mathematica 155 (1985), 103-147 Zbl0578.32044MR793239
  17. P. Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. 129 (1989), 1-60 Zbl0678.53042MR979599
  18. N. Th. Varopoulos, L. Saloff-Coste, T. Coulhon, Analysis and Geometry on Groups, (1992), Cambridge University Press, Cambridge Zbl1179.22009MR1218884

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.