Differentiability and Approximate Differentiability for Intrinsic Lipschitz Functions in Carnot Groups and a Rademacher Theorem

Bruno Franchi; Marco Marchi; Raul Paolo Serapioni

Analysis and Geometry in Metric Spaces (2014)

  • Volume: 2, Issue: 1, page 258-281, electronic only
  • ISSN: 2299-3274

Abstract

top
A Carnot group G is a connected, simply connected, nilpotent Lie group with stratified Lie algebra. We study intrinsic Lipschitz graphs and intrinsic differentiable graphs within Carnot groups. Both seem to be the natural analogues inside Carnot groups of the corresponding Euclidean notions. Here ‘natural’ is meant to stress that the intrinsic notions depend only on the structure of the algebra of G. We prove that one codimensional intrinsic Lipschitz graphs are sets with locally finite G-perimeter. From this a Rademacher’s type theorem for one codimensional graphs in a general class of groups is proved.

How to cite

top

Bruno Franchi, Marco Marchi, and Raul Paolo Serapioni. "Differentiability and Approximate Differentiability for Intrinsic Lipschitz Functions in Carnot Groups and a Rademacher Theorem." Analysis and Geometry in Metric Spaces 2.1 (2014): 258-281, electronic only. <http://eudml.org/doc/268836>.

@article{BrunoFranchi2014,
abstract = {A Carnot group G is a connected, simply connected, nilpotent Lie group with stratified Lie algebra. We study intrinsic Lipschitz graphs and intrinsic differentiable graphs within Carnot groups. Both seem to be the natural analogues inside Carnot groups of the corresponding Euclidean notions. Here ‘natural’ is meant to stress that the intrinsic notions depend only on the structure of the algebra of G. We prove that one codimensional intrinsic Lipschitz graphs are sets with locally finite G-perimeter. From this a Rademacher’s type theorem for one codimensional graphs in a general class of groups is proved.},
author = {Bruno Franchi, Marco Marchi, Raul Paolo Serapioni},
journal = {Analysis and Geometry in Metric Spaces},
keywords = {Carnot groups; rectifiable sets; intrinsic Lipschitz functions; Rademacher’s Theorem; Carnot group; Carnot-Carathéodory distance; rectifiable set; intrinsic Lipschitz function; intrinsic differentiable function; Rademacher's theorem},
language = {eng},
number = {1},
pages = {258-281, electronic only},
title = {Differentiability and Approximate Differentiability for Intrinsic Lipschitz Functions in Carnot Groups and a Rademacher Theorem},
url = {http://eudml.org/doc/268836},
volume = {2},
year = {2014},
}

TY - JOUR
AU - Bruno Franchi
AU - Marco Marchi
AU - Raul Paolo Serapioni
TI - Differentiability and Approximate Differentiability for Intrinsic Lipschitz Functions in Carnot Groups and a Rademacher Theorem
JO - Analysis and Geometry in Metric Spaces
PY - 2014
VL - 2
IS - 1
SP - 258
EP - 281, electronic only
AB - A Carnot group G is a connected, simply connected, nilpotent Lie group with stratified Lie algebra. We study intrinsic Lipschitz graphs and intrinsic differentiable graphs within Carnot groups. Both seem to be the natural analogues inside Carnot groups of the corresponding Euclidean notions. Here ‘natural’ is meant to stress that the intrinsic notions depend only on the structure of the algebra of G. We prove that one codimensional intrinsic Lipschitz graphs are sets with locally finite G-perimeter. From this a Rademacher’s type theorem for one codimensional graphs in a general class of groups is proved.
LA - eng
KW - Carnot groups; rectifiable sets; intrinsic Lipschitz functions; Rademacher’s Theorem; Carnot group; Carnot-Carathéodory distance; rectifiable set; intrinsic Lipschitz function; intrinsic differentiable function; Rademacher's theorem
UR - http://eudml.org/doc/268836
ER -

References

top
  1. [1] L.Ambrosio, N.Fusco, D.Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, Oxford University Press, (2000). Zbl0957.49001
  2. [2] L.Ambrosio, B.Kirchheim, Rectifiable sets in metric and Banach spaces, Math. Annalen, 318 (2000), 527–555. Zbl0966.28002
  3. [3] L.Ambrosio, B.Kirchheim, Currents in metric spaces, Acta Math. 185 (2000), 1–80. Zbl0984.49025
  4. [4] L.Ambrosio, B.Kirchheim, E. Le Donne, Rectifiability of sets of finite perimeter in Carnot groups: existence of a tangent hyperplane, J. Geom. Anal., 19, (2009), no. 3, 509–540. Zbl1187.28008
  5. [5] L.Ambrosio, F. Serra Cassano, D. Vittone, Intrinsic regular hypersurfaces in Heisenberg groups, J. Geom. Anal. 16, (2006), 187–232. Zbl1085.49045
  6. [6] G.Arena, Intrinsic Graphs, Convexity and Calculus on Carnot Groups, PhD Thesis, University of Trento, (2008). 
  7. [7] G.Arena, R.Serapioni, Intrinsic regular submanifolds in Heisenberg groups are differentiable graphs, Calc. Var. Partial Differential Equations 35 (2009), no. 4, 517–536. Zbl1225.53031
  8. [8] F.Bigolin, D.Vittone, Some remarks about parametrizations of intrinsic regular surfaces in the Heisenberg group, Publ. Mat. 54 (2010), no. 1, 159–172. Zbl1188.53028
  9. [9] F. Bigolin, F. Serra Cassano, Distributional solutions of Burgers’ equation and intrinsic regular graphs in Heisenberg groups, J. Math. Anal. Appl. 366 (2010), no. 2, 561–568. Zbl1186.35030
  10. [10] F. Bigolin, F. Serra Cassano, Intrinsic regular graphs in Heisenberg groups vs. weak solutions of non-linear first-order PDEs, Adv. Calc. Var. 3 (2010), no. 1, 69–97. Zbl1188.53027
  11. [11] A.Bonfiglioli, E.Lanconelli, F.Uguzzoni, Stratified Lie Groups and Potential Theory for their Sub–Laplacians, Springer Monographs in Mathematics, Springer-Verlag Berlin Heidelberg, New York (2007). Zbl1128.43001
  12. [12] G.Citti, M.Manfredini, Implicit function theorem in Carnot-Carathéodory spaces. Commun. Contemp. Math. 8 (2006), no. 5, 657–680. Zbl1160.53017
  13. [13] G.Citti, M.Manfredini, Blow-up in non homogeneous Lie groups and rectifiability. Houston J.Math. 31 (2005), no. 2, 333–353. Zbl1078.49030
  14. [14] L.C.Evans, R.F.Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, BocaRaton, (1992). Zbl0804.28001
  15. [15] H.Federer, Geometric Measure Theory, Springer, (1969). Zbl0176.00801
  16. [16] G.B.Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat., 13 (1975), 161–207. Zbl0312.35026
  17. [17] B.Franchi, R.Serapioni, Intrinsic Lipschitz graphs within Carnot groups, Preprint 2014 Zbl1307.22007
  18. [18] B.Franchi, R.Serapioni, F.Serra Cassano, Rectifiability and perimeter in the Heisenberg group, Math. Ann. 321 (2001), 479– 531. Zbl1057.49032
  19. [19] B.Franchi, R.Serapioni, F.Serra Cassano, Regular hypersurfaces, Intrinsic Perimeter and Implicit Function Theoremin Carnot Groups, Comm. Anal. Geom., 11 (2003), no 5, 909–944. Zbl1077.22008
  20. [20] B.Franchi, R.Serapioni, F.Serra Cassano, On the Structure of Finite Perimeter Sets in Step 2 Carnot Groups, The Journal of Geometric Analysis. 13 (2003), no. 3, 421–466. Zbl1064.49033
  21. [21] B.Franchi, R.Serapioni, F.Serra Cassano, Intrinsic Lipschitz graphs in Heisenberg groups. J. Nonlinear Convex Anal. 7 (2006), no. 3, 423–441. Zbl1151.58005
  22. [22] B.Franchi, R.Serapioni, F.Serra Cassano, Regular submanifolds, graphs and area formula in Heisenberg Groups. Advances in Math. 211 (2007), no.1, 152–203. Zbl1125.28002
  23. [23] B.Franchi, R.Serapioni, F.Serra Cassano, Rademacher theoremfor intrinsic Lipschitz continuous functions, J. Geom. Anal. 21 (2011), 1044–1084. Zbl1234.22002
  24. [24] N.Garofalo, D.M.Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math., 49 (1996), 1081–1144. Zbl0880.35032
  25. [25] M.Gromov, Metric structures for Riemannian and Non Riemannian Spaces, Progress inMathematics, 152, Birkhauser Verlag, Boston, (1999). 
  26. [26] B.Kirchheim, F.Serra Cassano, Rectifiability and parameterizations of intrinsically regular surfaces in the Heisenberg group, Ann. Scuola Norm. Sup. Pisa, Cl.Sc. (5) III, (2005), 871–896. Zbl1170.28300
  27. [27] R. Korte, P. Lahti, N. Shanmugalingam, Semmes family of curves a a characterization of functions of bounded variation in terms of curves, http://cvgmt.sns.it/media/doc/paper/2229/lineBV-CalcVarPDE-Sept2013.pdf (2013). Zbl1327.31026
  28. [28] V.Magnani, Elements of Geometric Measure Theory on Sub-Riemannian Groups, Tesi di Perfezionamento, Scuola Normale Superiore, Pisa, (2003). Zbl1064.28007
  29. [29] V.Magnani, Towards differential calculus in stratified groups, Journal of Australian Mathematical Society, 95 no.1, (2013), 76–128. Zbl1279.22011
  30. [30] M.Marchi, Regularity of sets with constant intrinsic normal in a class of Carnot groups to appear on Ann.Inst.Fourier (Grenoble). 
  31. [31] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, (1995). 
  32. [32] P.Mattila, R.Serapioni, F.Serra Cassano, Characterizations of intrinsic rectifiability in Heisenberg groups, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 9 (2010), no. 4, 687–723. Zbl1229.28004
  33. [33] J.Mitchell, On Carnot-Carathèodory metrics, J.Differ. Geom. 21 (1985), 35–45. Zbl0554.53023
  34. [34] R.Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications, Mathematical Surveys and Monographs 91, American Mathematical Society, Providence, RI (2002). Zbl1044.53022
  35. [35] S. Nicolussi Golo, The tangent space in Sub-Riemannian Geometry, Doctoral Thesis, Università di Trento, (2012). Zbl1312.53004
  36. [36] P.Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. 129 (1989), 1–60. Zbl0678.53042
  37. [37] S.D.Pauls, A notion of rectifiability modelled on Carnot groups, Indiana Univ. Math. J. 53 (2004), no. 1, 49–81. Zbl1076.49025
  38. [38] S. Semmes, On the nonexistence of bi-Lipschitz parameterizations and geometric problems about A–weights Rev. Mat. Iberoamericana 12 (1996), no. 2, 337–410. Zbl0858.46017
  39. [39] E.M.Stein, Harmonic Analysis: Real variable methods, orthogonality and oscillatory integrals, Princeton University Press, Princeton (1993). Zbl0821.42001
  40. [40] N.Th.Varopoulos, L.Saloff-Coste, T.Coulhon, Analysis and Geometry on Groups, Cambridge University Press, Cambridge, (1992) Zbl0813.22003
  41. [41] D.Vittone, Submanifolds in Carnot groups, Edizioni della Normale, Scuola Normale Superiore, Pisa, (2008). Zbl1142.53046
  42. [42] D.Vittone, Lipschitz surfaces, Perimeter and trace Theorems for BV Functions in Carnot-Caratheéodory Spaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), 11(4), (2012), 939–998. Zbl1270.53068

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.