Riemann surfaces in Stein manifolds with the Density property
Rafael B. Andrist[1]; Erlend Fornæss Wold[2]
- [1] Bergische Universität Wuppertal, Fachbereich C - Mathematik und Naturwissenschaften, Gaußstraße 20, 42119 Wuppertal, Germany
- [2] Matematisk Institutt, Universitetet i Oslo, Postboks 1053 Blindern, 0316 Oslo, Norway
Annales de l’institut Fourier (2014)
- Volume: 64, Issue: 2, page 681-697
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topAndrist, Rafael B., and Wold, Erlend Fornæss. "Riemann surfaces in Stein manifolds with the Density property." Annales de l’institut Fourier 64.2 (2014): 681-697. <http://eudml.org/doc/275619>.
@article{Andrist2014,
abstract = {We show that any open Riemann surface can be properly immersed in any Stein manifold with the (Volume) Density property and of dimension at least 2. If the dimension is at least 3, we can actually choose this immersion to be an embedding. As an application, we show that Stein manifolds with the (Volume) Density property and of dimension at least 3, are characterized among all other complex manifolds by their semigroup of holomorphic endomorphisms.},
affiliation = {Bergische Universität Wuppertal, Fachbereich C - Mathematik und Naturwissenschaften, Gaußstraße 20, 42119 Wuppertal, Germany; Matematisk Institutt, Universitetet i Oslo, Postboks 1053 Blindern, 0316 Oslo, Norway},
author = {Andrist, Rafael B., Wold, Erlend Fornæss},
journal = {Annales de l’institut Fourier},
keywords = {Riemann surface; Stein manifold; proper holomorphic map; Andersen-Lempert theory; Density property; Volume Density property; density property; volume density property},
language = {eng},
number = {2},
pages = {681-697},
publisher = {Association des Annales de l’institut Fourier},
title = {Riemann surfaces in Stein manifolds with the Density property},
url = {http://eudml.org/doc/275619},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Andrist, Rafael B.
AU - Wold, Erlend Fornæss
TI - Riemann surfaces in Stein manifolds with the Density property
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 2
SP - 681
EP - 697
AB - We show that any open Riemann surface can be properly immersed in any Stein manifold with the (Volume) Density property and of dimension at least 2. If the dimension is at least 3, we can actually choose this immersion to be an embedding. As an application, we show that Stein manifolds with the (Volume) Density property and of dimension at least 3, are characterized among all other complex manifolds by their semigroup of holomorphic endomorphisms.
LA - eng
KW - Riemann surface; Stein manifold; proper holomorphic map; Andersen-Lempert theory; Density property; Volume Density property; density property; volume density property
UR - http://eudml.org/doc/275619
ER -
References
top- A. Alarcón, J. A. Galvéz, Proper harmonic maps from hyperbolic Riemann surfaces into the Euclidean plane, Results Math. 60 (2011), 487-505 Zbl1256.30045MR2836911
- A. Alarcon, F. J. López, Minimal surfaces in properly projecting into , J. Differential Geom. 90 (2012), 351-381 Zbl1252.53005MR2916039
- H. Alexander, J. Wermer, Several complex variables and Banach algebras, 35 (1998), Springer-Verlag, New York Zbl0894.46037MR1482798
- E. Andersén, Volume-preserving automorphisms of , Complex Variables Theory Appl. 14 (1990), 223-235 Zbl0705.58008MR1048723
- E. Andersén, L. Lempert, On the group of holomorphic automorphisms of , Invent. Math. 10 (1992), 371-388 Zbl0770.32015MR1185588
- R. B. Andrist, Stein Spaces Characterized by their Endomorphisms, Tran. AMS 363 (2011), 2341-2355 Zbl1222.32023MR2763719
- E. Bishop, Mappings of partially analytic spaces, Amer. J. Math. 83 (1961), 209-242 Zbl0118.07701MR123732
- G. T. Buzzard, A. Merenkov, Maps Conjugating Holomorphic Maps in , Indiana Univ. Math. J. 52 (2003), 1135-1146 Zbl1084.32502MR2010321
- B. Drinovec-Drnovšek, F. Forstnerič, Holomorphic curves in complex spaces, Duke Math. J. 139 (2007), 203-254 Zbl1133.32002MR2352132
- B. Drinovec-Drnovšek, F. Forstnerič, Approximation of Holomorphic Mappings on Strongly Pseudoconvex Domains, Forum Mathematicum 20 (2008), 817-840 Zbl1155.32008MR2445119
- B. Drinovec-Drnovšek, F. Forstnerič, Strongly Pseudoconvex Domains as Subvarieties of Complex Manifolds, American Journal of Mathematics 132 (2010), 331-360 Zbl1216.32009MR2654777
- O. Forster, Lectures on Riemann surfaces, (1999), Springer Zbl0475.30002MR1185074
- O. Forster, K. J. Ramspott, Analytische Modulgarben und Endromisbündel, Invent. Math. 2 (1966), 145-170 Zbl0154.33401MR218618
- F. Forstnerič, Noncritical Holomorphic Functions on Stein Manifolds, Acta. Math. 191 (2003), 143-189 Zbl1064.32021MR2051397
- F. Forstnerič, Extending holomorphic mappings from subvarieties in Stein manifolds, Ann. Inst. Fourier (Grenoble) 55 (2005), 733-751 Zbl1076.32003MR2149401
- F. Forstnerič, Runge approximation on convex sets implies the Oka property, Ann. Math. (2) 163 (2006), 689-707 Zbl1103.32004MR2199229
- F. Forstnerič, Oka manifolds, C. R. Math. Acad. Sci. Paris 347 (2009), 1017-1020 Zbl1175.32005MR2554568
- F. Forstnerič, Stein manifolds and holomorphic mappings. The homotopy principle in Complex Analysis, (2011), Springer Zbl1247.32001MR2975791
- F. Forstnerič, J. Globevnik, Proper holomorphic discs in , Math. Res. Letters 8 (2001), 257-274 Zbl1027.32018MR1839476
- F. Forstnerič, J.-P. Rosay, Approximation of biholomorphic mappings by automorphisms of , Invent. Math. 112 (1993), 323-349 Zbl0792.32011MR1213106
- B. Gilligan, A.T. Huckleberry, Complex homogeneous manifolds with two ends, Mich. J. Math. 28 (1981), 183-198 Zbl0452.32022MR616269
- M. Gromov, Oka’s principle for holomorphic sections of elliptic bundles, J. Amer. Math. Soc. 2 (1989), 851-897 Zbl0686.32012MR1001851
- G. Henkin, J. Leiterer, The Oka-Grauert principle without induction over the base dimension, Math. Ann. 311 (1998), 71-93 Zbl0955.32019MR1624267
- Sh. Kaliman, F. Kutschebauch, On the present state of the Andersén-Lempert theory, Affine algebraic geometry 54 (2011), 85-122, Amer. Math. Soc., Providence, RI Zbl1266.32028
- R. Narasimhan, Imbedding of holomorphically complete complex spaces, Amer. J. Math. 82 (1960), 917-934 Zbl0104.05402MR148942
- R. Remmert, Sur les espaces analytiques holomorphiquement séparables et holomorphiquement convexes, C. R. Acad. Sci. Paris 243 (1956), 118-121 Zbl0070.30401MR79808
- R. Schoen, S. Yau, Lectures on harmonic maps, (1997), International Press, Cambridge MA Zbl0886.53004MR1474501
- J. Schreier, Über Abbildungen einer abstrakten Menge auf ihre Teilmengen, Fund. Math 28 (1937), 261-264 Zbl0016.29503
- J.-P. Serre, Quelques problèmes globaux relatifs aux varietés de Stein, Colloque sur les fonctions de plusieurs variables, Bruxelles 1953 (1953), 57-68, Masson, Paris Zbl0053.05302
- Y. T. Siu, Every Stein subvariety admits a Stein neighborhood, Invent. Math. 38 (1976), 89-100 Zbl0343.32014MR435447
- D. Varolin, The Density Property for Complex Manifolds and Geometric Structures II, Internat. J. Math. 11 (2000), 837-847 Zbl0977.32016MR1785520
- D. Varolin, The Density Property for Complex Manifolds and Geometric Structures, J. Geom. Anal. 11 (2001), 135-160 Zbl0994.32019MR1829353
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.