Riemann surfaces in Stein manifolds with the Density property

Rafael B. Andrist[1]; Erlend Fornæss Wold[2]

  • [1] Bergische Universität Wuppertal, Fachbereich C - Mathematik und Naturwissenschaften, Gaußstraße 20, 42119 Wuppertal, Germany
  • [2] Matematisk Institutt, Universitetet i Oslo, Postboks 1053 Blindern, 0316 Oslo, Norway

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 2, page 681-697
  • ISSN: 0373-0956

Abstract

top
We show that any open Riemann surface can be properly immersed in any Stein manifold with the (Volume) Density property and of dimension at least 2. If the dimension is at least 3, we can actually choose this immersion to be an embedding. As an application, we show that Stein manifolds with the (Volume) Density property and of dimension at least 3, are characterized among all other complex manifolds by their semigroup of holomorphic endomorphisms.

How to cite

top

Andrist, Rafael B., and Wold, Erlend Fornæss. "Riemann surfaces in Stein manifolds with the Density property." Annales de l’institut Fourier 64.2 (2014): 681-697. <http://eudml.org/doc/275619>.

@article{Andrist2014,
abstract = {We show that any open Riemann surface can be properly immersed in any Stein manifold with the (Volume) Density property and of dimension at least 2. If the dimension is at least 3, we can actually choose this immersion to be an embedding. As an application, we show that Stein manifolds with the (Volume) Density property and of dimension at least 3, are characterized among all other complex manifolds by their semigroup of holomorphic endomorphisms.},
affiliation = {Bergische Universität Wuppertal, Fachbereich C - Mathematik und Naturwissenschaften, Gaußstraße 20, 42119 Wuppertal, Germany; Matematisk Institutt, Universitetet i Oslo, Postboks 1053 Blindern, 0316 Oslo, Norway},
author = {Andrist, Rafael B., Wold, Erlend Fornæss},
journal = {Annales de l’institut Fourier},
keywords = {Riemann surface; Stein manifold; proper holomorphic map; Andersen-Lempert theory; Density property; Volume Density property; density property; volume density property},
language = {eng},
number = {2},
pages = {681-697},
publisher = {Association des Annales de l’institut Fourier},
title = {Riemann surfaces in Stein manifolds with the Density property},
url = {http://eudml.org/doc/275619},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Andrist, Rafael B.
AU - Wold, Erlend Fornæss
TI - Riemann surfaces in Stein manifolds with the Density property
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 2
SP - 681
EP - 697
AB - We show that any open Riemann surface can be properly immersed in any Stein manifold with the (Volume) Density property and of dimension at least 2. If the dimension is at least 3, we can actually choose this immersion to be an embedding. As an application, we show that Stein manifolds with the (Volume) Density property and of dimension at least 3, are characterized among all other complex manifolds by their semigroup of holomorphic endomorphisms.
LA - eng
KW - Riemann surface; Stein manifold; proper holomorphic map; Andersen-Lempert theory; Density property; Volume Density property; density property; volume density property
UR - http://eudml.org/doc/275619
ER -

References

top
  1. A. Alarcón, J. A. Galvéz, Proper harmonic maps from hyperbolic Riemann surfaces into the Euclidean plane, Results Math. 60 (2011), 487-505 Zbl1256.30045MR2836911
  2. A. Alarcon, F. J. López, Minimal surfaces in 3 properly projecting into 2 , J. Differential Geom. 90 (2012), 351-381 Zbl1252.53005MR2916039
  3. H. Alexander, J. Wermer, Several complex variables and Banach algebras, 35 (1998), Springer-Verlag, New York Zbl0894.46037MR1482798
  4. E. Andersén, Volume-preserving automorphisms of n , Complex Variables Theory Appl. 14 (1990), 223-235 Zbl0705.58008MR1048723
  5. E. Andersén, L. Lempert, On the group of holomorphic automorphisms of n , Invent. Math. 10 (1992), 371-388 Zbl0770.32015MR1185588
  6. R. B. Andrist, Stein Spaces Characterized by their Endomorphisms, Tran. AMS 363 (2011), 2341-2355 Zbl1222.32023MR2763719
  7. E. Bishop, Mappings of partially analytic spaces, Amer. J. Math. 83 (1961), 209-242 Zbl0118.07701MR123732
  8. G. T. Buzzard, A. Merenkov, Maps Conjugating Holomorphic Maps in n , Indiana Univ. Math. J. 52 (2003), 1135-1146 Zbl1084.32502MR2010321
  9. B. Drinovec-Drnovšek, F. Forstnerič, Holomorphic curves in complex spaces, Duke Math. J. 139 (2007), 203-254 Zbl1133.32002MR2352132
  10. B. Drinovec-Drnovšek, F. Forstnerič, Approximation of Holomorphic Mappings on Strongly Pseudoconvex Domains, Forum Mathematicum 20 (2008), 817-840 Zbl1155.32008MR2445119
  11. B. Drinovec-Drnovšek, F. Forstnerič, Strongly Pseudoconvex Domains as Subvarieties of Complex Manifolds, American Journal of Mathematics 132 (2010), 331-360 Zbl1216.32009MR2654777
  12. O. Forster, Lectures on Riemann surfaces, (1999), Springer Zbl0475.30002MR1185074
  13. O. Forster, K. J. Ramspott, Analytische Modulgarben und Endromisbündel, Invent. Math. 2 (1966), 145-170 Zbl0154.33401MR218618
  14. F. Forstnerič, Noncritical Holomorphic Functions on Stein Manifolds, Acta. Math. 191 (2003), 143-189 Zbl1064.32021MR2051397
  15. F. Forstnerič, Extending holomorphic mappings from subvarieties in Stein manifolds, Ann. Inst. Fourier (Grenoble) 55 (2005), 733-751 Zbl1076.32003MR2149401
  16. F. Forstnerič, Runge approximation on convex sets implies the Oka property, Ann. Math. (2) 163 (2006), 689-707 Zbl1103.32004MR2199229
  17. F. Forstnerič, Oka manifolds, C. R. Math. Acad. Sci. Paris 347 (2009), 1017-1020 Zbl1175.32005MR2554568
  18. F. Forstnerič, Stein manifolds and holomorphic mappings. The homotopy principle in Complex Analysis, (2011), Springer Zbl1247.32001MR2975791
  19. F. Forstnerič, J. Globevnik, Proper holomorphic discs in 2 , Math. Res. Letters 8 (2001), 257-274 Zbl1027.32018MR1839476
  20. F. Forstnerič, J.-P. Rosay, Approximation of biholomorphic mappings by automorphisms of n , Invent. Math. 112 (1993), 323-349 Zbl0792.32011MR1213106
  21. B. Gilligan, A.T. Huckleberry, Complex homogeneous manifolds with two ends, Mich. J. Math. 28 (1981), 183-198 Zbl0452.32022MR616269
  22. M. Gromov, Oka’s principle for holomorphic sections of elliptic bundles, J. Amer. Math. Soc. 2 (1989), 851-897 Zbl0686.32012MR1001851
  23. G. Henkin, J. Leiterer, The Oka-Grauert principle without induction over the base dimension, Math. Ann. 311 (1998), 71-93 Zbl0955.32019MR1624267
  24. Sh. Kaliman, F. Kutschebauch, On the present state of the Andersén-Lempert theory, Affine algebraic geometry 54 (2011), 85-122, Amer. Math. Soc., Providence, RI Zbl1266.32028
  25. R. Narasimhan, Imbedding of holomorphically complete complex spaces, Amer. J. Math. 82 (1960), 917-934 Zbl0104.05402MR148942
  26. R. Remmert, Sur les espaces analytiques holomorphiquement séparables et holomorphiquement convexes, C. R. Acad. Sci. Paris 243 (1956), 118-121 Zbl0070.30401MR79808
  27. R. Schoen, S. Yau, Lectures on harmonic maps, (1997), International Press, Cambridge MA Zbl0886.53004MR1474501
  28. J. Schreier, Über Abbildungen einer abstrakten Menge auf ihre Teilmengen, Fund. Math 28 (1937), 261-264 Zbl0016.29503
  29. J.-P. Serre, Quelques problèmes globaux relatifs aux varietés de Stein, Colloque sur les fonctions de plusieurs variables, Bruxelles 1953 (1953), 57-68, Masson, Paris Zbl0053.05302
  30. Y. T. Siu, Every Stein subvariety admits a Stein neighborhood, Invent. Math. 38 (1976), 89-100 Zbl0343.32014MR435447
  31. D. Varolin, The Density Property for Complex Manifolds and Geometric Structures II, Internat. J. Math. 11 (2000), 837-847 Zbl0977.32016MR1785520
  32. D. Varolin, The Density Property for Complex Manifolds and Geometric Structures, J. Geom. Anal. 11 (2001), 135-160 Zbl0994.32019MR1829353

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.