Riemann surfaces in Stein manifolds with the Density property
Rafael B. Andrist[1]; Erlend Fornæss Wold[2]
- [1] Bergische Universität Wuppertal, Fachbereich C - Mathematik und Naturwissenschaften, Gaußstraße 20, 42119 Wuppertal, Germany
- [2] Matematisk Institutt, Universitetet i Oslo, Postboks 1053 Blindern, 0316 Oslo, Norway
Annales de l’institut Fourier (2014)
- Volume: 64, Issue: 2, page 681-697
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- A. Alarcón, J. A. Galvéz, Proper harmonic maps from hyperbolic Riemann surfaces into the Euclidean plane, Results Math. 60 (2011), 487-505 Zbl1256.30045MR2836911
- A. Alarcon, F. J. López, Minimal surfaces in properly projecting into , J. Differential Geom. 90 (2012), 351-381 Zbl1252.53005MR2916039
- H. Alexander, J. Wermer, Several complex variables and Banach algebras, 35 (1998), Springer-Verlag, New York Zbl0894.46037MR1482798
- E. Andersén, Volume-preserving automorphisms of , Complex Variables Theory Appl. 14 (1990), 223-235 Zbl0705.58008MR1048723
- E. Andersén, L. Lempert, On the group of holomorphic automorphisms of , Invent. Math. 10 (1992), 371-388 Zbl0770.32015MR1185588
- R. B. Andrist, Stein Spaces Characterized by their Endomorphisms, Tran. AMS 363 (2011), 2341-2355 Zbl1222.32023MR2763719
- E. Bishop, Mappings of partially analytic spaces, Amer. J. Math. 83 (1961), 209-242 Zbl0118.07701MR123732
- G. T. Buzzard, A. Merenkov, Maps Conjugating Holomorphic Maps in , Indiana Univ. Math. J. 52 (2003), 1135-1146 Zbl1084.32502MR2010321
- B. Drinovec-Drnovšek, F. Forstnerič, Holomorphic curves in complex spaces, Duke Math. J. 139 (2007), 203-254 Zbl1133.32002MR2352132
- B. Drinovec-Drnovšek, F. Forstnerič, Approximation of Holomorphic Mappings on Strongly Pseudoconvex Domains, Forum Mathematicum 20 (2008), 817-840 Zbl1155.32008MR2445119
- B. Drinovec-Drnovšek, F. Forstnerič, Strongly Pseudoconvex Domains as Subvarieties of Complex Manifolds, American Journal of Mathematics 132 (2010), 331-360 Zbl1216.32009MR2654777
- O. Forster, Lectures on Riemann surfaces, (1999), Springer Zbl0475.30002MR1185074
- O. Forster, K. J. Ramspott, Analytische Modulgarben und Endromisbündel, Invent. Math. 2 (1966), 145-170 Zbl0154.33401MR218618
- F. Forstnerič, Noncritical Holomorphic Functions on Stein Manifolds, Acta. Math. 191 (2003), 143-189 Zbl1064.32021MR2051397
- F. Forstnerič, Extending holomorphic mappings from subvarieties in Stein manifolds, Ann. Inst. Fourier (Grenoble) 55 (2005), 733-751 Zbl1076.32003MR2149401
- F. Forstnerič, Runge approximation on convex sets implies the Oka property, Ann. Math. (2) 163 (2006), 689-707 Zbl1103.32004MR2199229
- F. Forstnerič, Oka manifolds, C. R. Math. Acad. Sci. Paris 347 (2009), 1017-1020 Zbl1175.32005MR2554568
- F. Forstnerič, Stein manifolds and holomorphic mappings. The homotopy principle in Complex Analysis, (2011), Springer Zbl1247.32001MR2975791
- F. Forstnerič, J. Globevnik, Proper holomorphic discs in , Math. Res. Letters 8 (2001), 257-274 Zbl1027.32018MR1839476
- F. Forstnerič, J.-P. Rosay, Approximation of biholomorphic mappings by automorphisms of , Invent. Math. 112 (1993), 323-349 Zbl0792.32011MR1213106
- B. Gilligan, A.T. Huckleberry, Complex homogeneous manifolds with two ends, Mich. J. Math. 28 (1981), 183-198 Zbl0452.32022MR616269
- M. Gromov, Oka’s principle for holomorphic sections of elliptic bundles, J. Amer. Math. Soc. 2 (1989), 851-897 Zbl0686.32012MR1001851
- G. Henkin, J. Leiterer, The Oka-Grauert principle without induction over the base dimension, Math. Ann. 311 (1998), 71-93 Zbl0955.32019MR1624267
- Sh. Kaliman, F. Kutschebauch, On the present state of the Andersén-Lempert theory, Affine algebraic geometry 54 (2011), 85-122, Amer. Math. Soc., Providence, RI Zbl1266.32028
- R. Narasimhan, Imbedding of holomorphically complete complex spaces, Amer. J. Math. 82 (1960), 917-934 Zbl0104.05402MR148942
- R. Remmert, Sur les espaces analytiques holomorphiquement séparables et holomorphiquement convexes, C. R. Acad. Sci. Paris 243 (1956), 118-121 Zbl0070.30401MR79808
- R. Schoen, S. Yau, Lectures on harmonic maps, (1997), International Press, Cambridge MA Zbl0886.53004MR1474501
- J. Schreier, Über Abbildungen einer abstrakten Menge auf ihre Teilmengen, Fund. Math 28 (1937), 261-264 Zbl0016.29503
- J.-P. Serre, Quelques problèmes globaux relatifs aux varietés de Stein, Colloque sur les fonctions de plusieurs variables, Bruxelles 1953 (1953), 57-68, Masson, Paris Zbl0053.05302
- Y. T. Siu, Every Stein subvariety admits a Stein neighborhood, Invent. Math. 38 (1976), 89-100 Zbl0343.32014MR435447
- D. Varolin, The Density Property for Complex Manifolds and Geometric Structures II, Internat. J. Math. 11 (2000), 837-847 Zbl0977.32016MR1785520
- D. Varolin, The Density Property for Complex Manifolds and Geometric Structures, J. Geom. Anal. 11 (2001), 135-160 Zbl0994.32019MR1829353