Eigenspaces of the ideal class group

Cornelius Greither[1]; Radan Kučera[2]

  • [1] Universität der Bundeswehr München Fakultät für Informatik Institut für theoretische Informatik, Mathematik und OR 85577 Neubiberg (Germany)
  • [2] Masaryk University Faculty of Science 611 37 Brno (Czech Republic)

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 5, page 2165-2203
  • ISSN: 0373-0956

Abstract

top
The aim of this paper is to prove an analog of Gras’ conjecture for an abelian field F and an odd prime p dividing the degree [ F : ] assuming that the p -part of Gal ( F / ) group is cyclic.

How to cite

top

Greither, Cornelius, and Kučera, Radan. "Eigenspaces of the ideal class group." Annales de l’institut Fourier 64.5 (2014): 2165-2203. <http://eudml.org/doc/275624>.

@article{Greither2014,
abstract = {The aim of this paper is to prove an analog of Gras’ conjecture for an abelian field $F$ and an odd prime $p$ dividing the degree $[F:\{\mathbb\{Q\}\}]$ assuming that the $p$-part of $\{\rm Gal\}(F/\{\mathbb\{Q\}\})$ group is cyclic.},
affiliation = {Universität der Bundeswehr München Fakultät für Informatik Institut für theoretische Informatik, Mathematik und OR 85577 Neubiberg (Germany); Masaryk University Faculty of Science 611 37 Brno (Czech Republic)},
author = {Greither, Cornelius, Kučera, Radan},
journal = {Annales de l’institut Fourier},
keywords = {Gras’ conjecture; circular (cyclotomic) units; ideal class group; Euler system; annihilators of the class group; Gras' conjecture; Sinnott group of circular units; eigenspaces of the ideal class group; Euler systems},
language = {eng},
number = {5},
pages = {2165-2203},
publisher = {Association des Annales de l’institut Fourier},
title = {Eigenspaces of the ideal class group},
url = {http://eudml.org/doc/275624},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Greither, Cornelius
AU - Kučera, Radan
TI - Eigenspaces of the ideal class group
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 5
SP - 2165
EP - 2203
AB - The aim of this paper is to prove an analog of Gras’ conjecture for an abelian field $F$ and an odd prime $p$ dividing the degree $[F:{\mathbb{Q}}]$ assuming that the $p$-part of ${\rm Gal}(F/{\mathbb{Q}})$ group is cyclic.
LA - eng
KW - Gras’ conjecture; circular (cyclotomic) units; ideal class group; Euler system; annihilators of the class group; Gras' conjecture; Sinnott group of circular units; eigenspaces of the ideal class group; Euler systems
UR - http://eudml.org/doc/275624
ER -

References

top
  1. J.-R. Belliard, T. Nguyen Quang Do, Formules de classes pour les corps abéliens réels, Ann. Inst. Fourier (Grenoble) 51 (2001), 903-937 Zbl1007.11063MR1849210
  2. Kâzim Büyükboduk, Kolyvagin systems of Stark units, J. Reine Angew. Math. 631 (2009), 85-107 Zbl1216.11102MR2542218
  3. Ralph Greenberg, On p -adic L -functions and cyclotomic fields. II, Nagoya Math. J. 67 (1977), 139-158 Zbl0373.12007MR444614
  4. Cornelius Greither, Radan Kučera, Annihilators for the class group of a cyclic field of prime power degree. II, Canad. J. Math. 58 (2006), 580-599 Zbl1155.11054MR2223457
  5. Cornelius Greither, Radan Kučera, Linear forms on Sinnott’s module, J. Number Theory 141 (2014), 324-342 Zbl1309.11079MR3195403
  6. I. Kaplansky, Commutative Rings, Polygonal Publishing House (1994) 
  7. Radan Kučera, Circular units and class groups of abelian fields, Ann. Sci. Math. Québec 28 (2004), 121-136 (2005) Zbl1103.11031MR2183100
  8. L. V. Kuzmin, On formulas for the class number of real abelian fields, Izv. Ross. Akad. Nauk Ser. Mat. 60 (1996), 43-110 Zbl1007.11065MR1416925
  9. B. Mazur, A. Wiles, Class fields of abelian extensions of Q , Invent. Math. 76 (1984), 179-330 Zbl0545.12005MR742853
  10. K. Rubin, The Main Conjecture, Appendix in S. Lang, Cyclotomic Fields I and II, second ed 121 (1990), Springer, New York 
  11. W. Sinnott, On the Stickelberger ideal and the circular units of an abelian field, Invent. Math. 62 (1980/81), 181-234 Zbl0465.12001MR595586
  12. Francisco Thaine, On the ideal class groups of real abelian number fields, Ann. of Math. (2) 128 (1988), 1-18 Zbl0665.12003MR951505
  13. Lawrence C. Washington, Introduction to cyclotomic fields, 83 (1997), Springer-Verlag, New York Zbl0484.12001MR1421575

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.