Class formulae for real abelian fields
Jean-Robert Belliard[1]; Thong Nguyen Quang Do[1]
- [1] Université de Franche-Comté, Laboratoire de Mathématiques, CNRS UMR 6623, 16 route de Gray, 25030 Besançon Cedex (France)
Annales de l’institut Fourier (2001)
- Volume: 51, Issue: 4, page 903-937
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- W. Bley, D. Burns, Equivariant Tamagawa numbers, Fitting ideals and Iwasawa theory, (2000) Zbl0987.11069MR1760494
- J.-R. Belliard, Sur la structure galoisienne des unités circulaires dans les -extensions, J. of Number Theory 69 (1998), 16-49 Zbl0911.11051MR1611081
- J. Coates, -adic -functions and Iwasawa’s theory, Proc. Sympos., Univ. Durham, Durham (1975) (1977), 269-353, Academic Press, London Zbl0393.12027
- P. Cornacchia, Fitting ideals of class groups in a -extension, Acta Arithm. 87 (1998), 79-88 Zbl0926.11084MR1659155
- L. J. Federer, B. H. Gross, Regulators and Iwasawa modules. With an appendix by W. Sinnott, Invent. Math. 62 (1981), 443-457 Zbl0468.12005MR604838
- R. Gillard, Unités cyclotomiques, unités semi-locales et -extensions, Ann. Inst. Fourier, Grenoble 29 (1979), 49-79 Zbl0387.12002MR526777
- R. Gillard, Unités cyclotomiques, unités semi-locales et -extensions II, Ann. Inst. Fourier, Grenoble 29 (1979), 1-15 Zbl0403.12006MR558585
- R. Gillard, Remarques sur les unités cyclotomiques et elliptiques, J. of Number Theory 11 (1979), 21-48 Zbl0405.12008MR527759
- M. Grandet, J.-F. Jaulent, Sur la capitulation dans une -extension, J. Reine Angew. Math. 362 (1985), 213-217 Zbl0564.12011MR809976
- G. Gras, Classes d'idéaux des corps abéliens et nombres de Bernoulli généralisés, Ann. Inst. Fourier 27 (1977), 1-66 Zbl0336.12004MR450238
- G. Gras, Canonical divisibilities of values of -adic -functions, Journées Arithmétiques d'Exeter (1980) Zbl0494.12006
- R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), 263-284 Zbl0334.12013MR401702
- C. Greither, Class groups of abelian fields and the Main Conjecture, Ann. Inst. Fourier 42 (1992), 449-499 Zbl0729.11053MR1182638
- C. Greither, The structure of some minus class groups, and Chinburg's third conjecture for abelian fields, Math. Zeit. 229 (1998), 107-136 Zbl0919.11072MR1649330
- K. Iwasawa, On some modules in the theory of cyclotomic fields, J. Math. Soc. Japan 16 (1964), 42-82 Zbl0125.29207MR215811
- J.-F. Jaulent, Classes logarithmiques des corps de nombres, J. Théor. Nombres, Bordeaux 6 (1994), 301-325 Zbl0827.11064MR1360648
- M. Kolster, T. Nguyen Quang Do, V. Fleckinger, Twisted -units, -adic class number formulas, and the Lichtenbaum conjectures, Duke Math. J. 84 (1996), 679-717 Zbl0863.19003MR1408541
- J. Kraft, R. Schoof, Computing Iwasawa modules of real quadratic number fields, Special issue in honour of Frans Oort 97 (1995), 135-155 Zbl0840.11043
- L. V. Kuz'min, The Tate module of algebraic number fields, Math. USSR-Izv 6 (1972), 263-321 Zbl0257.12003MR304353
- L. V. Kuz'min, On formulas for the class number of real abelian fields, Math. USSR-Izv 60 (1996), 695-761 Zbl1007.11065MR1416925
- S. Lang, Introduction to Cyclotomic Fields I and II, 121 (1990), Springer-Verlag, New-York Zbl0704.11038MR1029028
- G. Lettl, The ring of integers of an abelian number field, J. reine angew. Math. 404 (1990), 162-170 Zbl0703.11060MR1037435
- G. Lettl, Relative Galois module structure of integers of local abelian fields, Acta Arithm. 85 (1998), 235-248 Zbl0910.11050MR1627831
- B. Mazur, A. Wiles, Class fields of abelian extensions of , Invent. Math. 76 (1984), 179-330 Zbl0545.12005MR742853
- M. Ozaki, On the cyclotomic unit group and the ideal class group of a real abelian number field I, J. of Number Theory 64 (1997), 211-222 Zbl0879.11058MR1453211
- M. Ozaki, On the cyclotomic unit group and the ideal class group of a real abelian number field II, J. of Number Theory 64 (1997), 223-232 Zbl0879.11059MR1453211
- W. Sinnott, On the Stickelberger ideal and the circular units of a cyclotomic field, Ann. of Math. 108 (1978), 107-134 Zbl0395.12014MR485778
- W. Sinnott, On the Stickelberger ideal and the circular units of an abelian field, Invent. Math. 62 (1981), 181-234 Zbl0465.12001MR595586
- D. Solomon, On a construction of p-units in abelian fields, Invent. Math. 109 (1992), 329-350 Zbl0772.11043MR1172694
- D. Solomon, Galois relations for cyclotomic numbers and p-units, J. Number Theory 78 (1994), 1-26 Zbl0807.11054MR1269250
- T. Tsuji, Semi-local units modulo cyclotomic units, J. Number Theory 46 (1999), 158-178 Zbl0948.11042MR1706941
- L. Villemot, Etude du quotient des unités semi-locales par les unités cyclotomiques dans les -extensions des corps de nombres abéliens réels, (1981) Zbl0473.12003MR627614
- L. Washington, Introduction to Cyclotomic Fields, 83 (1982), Springer-Verlag Zbl0484.12001MR718674
- A. Wiles, The Iwasawa conjecture for totally real fields, Ann. of Math. 131 (1990), 493-540 Zbl0719.11071MR1053488
- K. Wingberg, Duality theorems for -extensions of algebraic number fields, Compositio Math. 55 (1985), 333-381 Zbl0608.12012MR799821
Citations in EuDML Documents
top- Cornelius Greither, Radan Kučera, Eigenspaces of the ideal class group
- Guido Kings, The Bloch-Kato conjecture on special values of -functions. A survey of known results
- Denis Benois, Thong Nguyen Quang Do, Les nombres de Tamagawa locaux et la conjecture de Bloch et Kato pour les motifs Q(m) sur un corps abélien