Class formulae for real abelian fields

Jean-Robert Belliard[1]; Thong Nguyen Quang Do[1]

  • [1] Université de Franche-Comté, Laboratoire de Mathématiques, CNRS UMR 6623, 16 route de Gray, 25030 Besançon Cedex (France)

Annales de l’institut Fourier (2001)

  • Volume: 51, Issue: 4, page 903-937
  • ISSN: 0373-0956

Abstract

top
We show p -adic and “character by character” refinements of Sinnott’s index formula for a totally real abelian number field. Such refinements have also been obtained by Kuz’min by different methods (but see comments in the introduction). Applications are given to Iwasawa theory of semi-local units and cyclotomic units.

How to cite

top

Belliard, Jean-Robert, and Nguyen Quang Do, Thong. "Formules de classes pour les corps abéliens réels." Annales de l’institut Fourier 51.4 (2001): 903-937. <http://eudml.org/doc/115940>.

@article{Belliard2001,
abstract = {Nous montrons des raffinements $p$-adique et “caractères par caractères” de la formule d’indice de Sinnott pour un corps abélien totalement réel. De tels raffinements ont aussi été obtenus par Kuz’min avec des méthodes différentes (voir les commentaires en introduction). Nous donnons des applications à la théorie d’Iwasawa des unités semi- locales et cyclotomiques.},
affiliation = {Université de Franche-Comté, Laboratoire de Mathématiques, CNRS UMR 6623, 16 route de Gray, 25030 Besançon Cedex (France); Université de Franche-Comté, Laboratoire de Mathématiques, CNRS UMR 6623, 16 route de Gray, 25030 Besançon Cedex (France)},
author = {Belliard, Jean-Robert, Nguyen Quang Do, Thong},
journal = {Annales de l’institut Fourier},
keywords = {class groups; $p$-adic $L$ functions; Iwasawa’s theory},
language = {fre},
number = {4},
pages = {903-937},
publisher = {Association des Annales de l'Institut Fourier},
title = {Formules de classes pour les corps abéliens réels},
url = {http://eudml.org/doc/115940},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Belliard, Jean-Robert
AU - Nguyen Quang Do, Thong
TI - Formules de classes pour les corps abéliens réels
JO - Annales de l’institut Fourier
PY - 2001
PB - Association des Annales de l'Institut Fourier
VL - 51
IS - 4
SP - 903
EP - 937
AB - Nous montrons des raffinements $p$-adique et “caractères par caractères” de la formule d’indice de Sinnott pour un corps abélien totalement réel. De tels raffinements ont aussi été obtenus par Kuz’min avec des méthodes différentes (voir les commentaires en introduction). Nous donnons des applications à la théorie d’Iwasawa des unités semi- locales et cyclotomiques.
LA - fre
KW - class groups; $p$-adic $L$ functions; Iwasawa’s theory
UR - http://eudml.org/doc/115940
ER -

References

top
  1. W. Bley, D. Burns, Equivariant Tamagawa numbers, Fitting ideals and Iwasawa theory, (2000) Zbl0987.11069MR1760494
  2. J.-R. Belliard, Sur la structure galoisienne des unités circulaires dans les p -extensions, J. of Number Theory 69 (1998), 16-49 Zbl0911.11051MR1611081
  3. J. Coates, p -adic L -functions and Iwasawa’s theory, Proc. Sympos., Univ. Durham, Durham (1975) (1977), 269-353, Academic Press, London Zbl0393.12027
  4. P. Cornacchia, Fitting ideals of class groups in a p -extension, Acta Arithm. 87 (1998), 79-88 Zbl0926.11084MR1659155
  5. L. J. Federer, B. H. Gross, Regulators and Iwasawa modules. With an appendix by W. Sinnott, Invent. Math. 62 (1981), 443-457 Zbl0468.12005MR604838
  6. R. Gillard, Unités cyclotomiques, unités semi-locales et l -extensions, Ann. Inst. Fourier, Grenoble 29 (1979), 49-79 Zbl0387.12002MR526777
  7. R. Gillard, Unités cyclotomiques, unités semi-locales et l -extensions II, Ann. Inst. Fourier, Grenoble 29 (1979), 1-15 Zbl0403.12006MR558585
  8. R. Gillard, Remarques sur les unités cyclotomiques et elliptiques, J. of Number Theory 11 (1979), 21-48 Zbl0405.12008MR527759
  9. M. Grandet, J.-F. Jaulent, Sur la capitulation dans une -extension, J. Reine Angew. Math. 362 (1985), 213-217 Zbl0564.12011MR809976
  10. G. Gras, Classes d'idéaux des corps abéliens et nombres de Bernoulli généralisés, Ann. Inst. Fourier 27 (1977), 1-66 Zbl0336.12004MR450238
  11. G. Gras, Canonical divisibilities of values of p -adic L -functions, Journées Arithmétiques d'Exeter (1980) Zbl0494.12006
  12. R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), 263-284 Zbl0334.12013MR401702
  13. C. Greither, Class groups of abelian fields and the Main Conjecture, Ann. Inst. Fourier 42 (1992), 449-499 Zbl0729.11053MR1182638
  14. C. Greither, The structure of some minus class groups, and Chinburg's third conjecture for abelian fields, Math. Zeit. 229 (1998), 107-136 Zbl0919.11072MR1649330
  15. K. Iwasawa, On some modules in the theory of cyclotomic fields, J. Math. Soc. Japan 16 (1964), 42-82 Zbl0125.29207MR215811
  16. J.-F. Jaulent, Classes logarithmiques des corps de nombres, J. Théor. Nombres, Bordeaux 6 (1994), 301-325 Zbl0827.11064MR1360648
  17. M. Kolster, T. Nguyen Quang Do, V. Fleckinger, Twisted S -units, p -adic class number formulas, and the Lichtenbaum conjectures, Duke Math. J. 84 (1996), 679-717 Zbl0863.19003MR1408541
  18. J. Kraft, R. Schoof, Computing Iwasawa modules of real quadratic number fields, Special issue in honour of Frans Oort 97 (1995), 135-155 Zbl0840.11043
  19. L. V. Kuz'min, The Tate module of algebraic number fields, Math. USSR-Izv 6 (1972), 263-321 Zbl0257.12003MR304353
  20. L. V. Kuz'min, On formulas for the class number of real abelian fields, Math. USSR-Izv 60 (1996), 695-761 Zbl1007.11065MR1416925
  21. S. Lang, Introduction to Cyclotomic Fields I and II, 121 (1990), Springer-Verlag, New-York Zbl0704.11038MR1029028
  22. G. Lettl, The ring of integers of an abelian number field, J. reine angew. Math. 404 (1990), 162-170 Zbl0703.11060MR1037435
  23. G. Lettl, Relative Galois module structure of integers of local abelian fields, Acta Arithm. 85 (1998), 235-248 Zbl0910.11050MR1627831
  24. B. Mazur, A. Wiles, Class fields of abelian extensions of , Invent. Math. 76 (1984), 179-330 Zbl0545.12005MR742853
  25. M. Ozaki, On the cyclotomic unit group and the ideal class group of a real abelian number field I, J. of Number Theory 64 (1997), 211-222 Zbl0879.11058MR1453211
  26. M. Ozaki, On the cyclotomic unit group and the ideal class group of a real abelian number field II, J. of Number Theory 64 (1997), 223-232 Zbl0879.11059MR1453211
  27. W. Sinnott, On the Stickelberger ideal and the circular units of a cyclotomic field, Ann. of Math. 108 (1978), 107-134 Zbl0395.12014MR485778
  28. W. Sinnott, On the Stickelberger ideal and the circular units of an abelian field, Invent. Math. 62 (1981), 181-234 Zbl0465.12001MR595586
  29. D. Solomon, On a construction of p-units in abelian fields, Invent. Math. 109 (1992), 329-350 Zbl0772.11043MR1172694
  30. D. Solomon, Galois relations for cyclotomic numbers and p-units, J. Number Theory 78 (1994), 1-26 Zbl0807.11054MR1269250
  31. T. Tsuji, Semi-local units modulo cyclotomic units, J. Number Theory 46 (1999), 158-178 Zbl0948.11042MR1706941
  32. L. Villemot, Etude du quotient des unités semi-locales par les unités cyclotomiques dans les Z p -extensions des corps de nombres abéliens réels, (1981) Zbl0473.12003MR627614
  33. L. Washington, Introduction to Cyclotomic Fields, 83 (1982), Springer-Verlag Zbl0484.12001MR718674
  34. A. Wiles, The Iwasawa conjecture for totally real fields, Ann. of Math. 131 (1990), 493-540 Zbl0719.11071MR1053488
  35. K. Wingberg, Duality theorems for Γ -extensions of algebraic number fields, Compositio Math. 55 (1985), 333-381 Zbl0608.12012MR799821

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.