Kronecker’s solution of Pell’s equation for CM fields

Riad Masri[1]

  • [1] Texas A&M University Department of Mathematics College Station, TX 77843 (USA)

Annales de l’institut Fourier (2013)

  • Volume: 63, Issue: 6, page 2287-2306
  • ISSN: 0373-0956

Abstract

top
We generalize Kronecker’s solution of Pell’s equation to CM fields K whose Galois group over is an elementary abelian 2-group. This is an identity which relates CM values of a certain Hilbert modular function to products of logarithms of fundamental units. When K is imaginary quadratic, these CM values are algebraic numbers related to elliptic units in the Hilbert class field of K . Assuming Schanuel’s conjecture, we show that when K has degree greater than 2 over these CM values are transcendental.

How to cite

top

Masri, Riad. "Kronecker’s solution of Pell’s equation for CM fields." Annales de l’institut Fourier 63.6 (2013): 2287-2306. <http://eudml.org/doc/275625>.

@article{Masri2013,
abstract = {We generalize Kronecker’s solution of Pell’s equation to CM fields $K$ whose Galois group over $\mathbb\{Q\}$ is an elementary abelian 2-group. This is an identity which relates CM values of a certain Hilbert modular function to products of logarithms of fundamental units. When $K$ is imaginary quadratic, these CM values are algebraic numbers related to elliptic units in the Hilbert class field of $K$. Assuming Schanuel’s conjecture, we show that when $K$ has degree greater than 2 over $\mathbb\{Q\}$ these CM values are transcendental.},
affiliation = {Texas A&M University Department of Mathematics College Station, TX 77843 (USA)},
author = {Masri, Riad},
journal = {Annales de l’institut Fourier},
keywords = {CM point; Hilbert modular function; Pell’s equation; Pell's equation},
language = {eng},
number = {6},
pages = {2287-2306},
publisher = {Association des Annales de l’institut Fourier},
title = {Kronecker’s solution of Pell’s equation for CM fields},
url = {http://eudml.org/doc/275625},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Masri, Riad
TI - Kronecker’s solution of Pell’s equation for CM fields
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 6
SP - 2287
EP - 2306
AB - We generalize Kronecker’s solution of Pell’s equation to CM fields $K$ whose Galois group over $\mathbb{Q}$ is an elementary abelian 2-group. This is an identity which relates CM values of a certain Hilbert modular function to products of logarithms of fundamental units. When $K$ is imaginary quadratic, these CM values are algebraic numbers related to elliptic units in the Hilbert class field of $K$. Assuming Schanuel’s conjecture, we show that when $K$ has degree greater than 2 over $\mathbb{Q}$ these CM values are transcendental.
LA - eng
KW - CM point; Hilbert modular function; Pell’s equation; Pell's equation
UR - http://eudml.org/doc/275625
ER -

References

top
  1. Tetsuya Asai, On a certain function analogous to log η ( z ) , Nagoya Math. J. 40 (1970), 193-211 Zbl0213.05701MR271038
  2. Jan Hendrik Bruinier, Tonghai Yang, CM-values of Hilbert modular functions, Invent. Math. 163 (2006), 229-288 Zbl1093.11041MR2207018
  3. D. A. Buell, H. C. Williams, K. S. Williams, On the imaginary bicyclic biquadratic fields with class-number 2 , Math. Comp. 31 (1977), 1034-1042 Zbl0379.12002MR441914
  4. Benjamin Howard, Tonghai Yang, Intersections of Hirzebruch-Zagier divisors and CM cycles, 2041 (2012), Springer, Heidelberg Zbl1238.11069MR2951750
  5. Shuji Konno, On Kronecker’s limit formula in a totally imaginary quadratic field over a totally real algebraic number field, J. Math. Soc. Japan 17 (1965), 411-424 Zbl0147.03603MR183708
  6. M. Ram Murty, V. Kumar Murty, Transcendental values of class group L -functions, Math. Ann. 351 (2011), 835-855 Zbl1281.11071MR2854115
  7. M. Ram Murty, V. Kumar Murty, Transcendental values of class group L -functions, II, Proc. Amer. Math. Soc. 140 (2012), 3041-3047 Zbl1282.11082MR2917077
  8. Carl Ludwig Siegel, Lectures on advanced analytic number theory, (1965), Tata Institute of Fundamental Research, Bombay Zbl0278.10001MR262150
  9. Michel Waldschmidt, Diophantine approximation on linear algebraic groups, 326 (2000), Springer-Verlag, Berlin Zbl0944.11024MR1756786
  10. Lawrence C. Washington, Introduction to cyclotomic fields, 83 (1997), Springer-Verlag, New York Zbl0484.12001MR1421575

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.