Kronecker’s solution of Pell’s equation for CM fields
Riad Masri[1]
- [1] Texas A&M University Department of Mathematics College Station, TX 77843 (USA)
Annales de l’institut Fourier (2013)
- Volume: 63, Issue: 6, page 2287-2306
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMasri, Riad. "Kronecker’s solution of Pell’s equation for CM fields." Annales de l’institut Fourier 63.6 (2013): 2287-2306. <http://eudml.org/doc/275625>.
@article{Masri2013,
abstract = {We generalize Kronecker’s solution of Pell’s equation to CM fields $K$ whose Galois group over $\mathbb\{Q\}$ is an elementary abelian 2-group. This is an identity which relates CM values of a certain Hilbert modular function to products of logarithms of fundamental units. When $K$ is imaginary quadratic, these CM values are algebraic numbers related to elliptic units in the Hilbert class field of $K$. Assuming Schanuel’s conjecture, we show that when $K$ has degree greater than 2 over $\mathbb\{Q\}$ these CM values are transcendental.},
affiliation = {Texas A&M University Department of Mathematics College Station, TX 77843 (USA)},
author = {Masri, Riad},
journal = {Annales de l’institut Fourier},
keywords = {CM point; Hilbert modular function; Pell’s equation; Pell's equation},
language = {eng},
number = {6},
pages = {2287-2306},
publisher = {Association des Annales de l’institut Fourier},
title = {Kronecker’s solution of Pell’s equation for CM fields},
url = {http://eudml.org/doc/275625},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Masri, Riad
TI - Kronecker’s solution of Pell’s equation for CM fields
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 6
SP - 2287
EP - 2306
AB - We generalize Kronecker’s solution of Pell’s equation to CM fields $K$ whose Galois group over $\mathbb{Q}$ is an elementary abelian 2-group. This is an identity which relates CM values of a certain Hilbert modular function to products of logarithms of fundamental units. When $K$ is imaginary quadratic, these CM values are algebraic numbers related to elliptic units in the Hilbert class field of $K$. Assuming Schanuel’s conjecture, we show that when $K$ has degree greater than 2 over $\mathbb{Q}$ these CM values are transcendental.
LA - eng
KW - CM point; Hilbert modular function; Pell’s equation; Pell's equation
UR - http://eudml.org/doc/275625
ER -
References
top- Tetsuya Asai, On a certain function analogous to , Nagoya Math. J. 40 (1970), 193-211 Zbl0213.05701MR271038
- Jan Hendrik Bruinier, Tonghai Yang, CM-values of Hilbert modular functions, Invent. Math. 163 (2006), 229-288 Zbl1093.11041MR2207018
- D. A. Buell, H. C. Williams, K. S. Williams, On the imaginary bicyclic biquadratic fields with class-number , Math. Comp. 31 (1977), 1034-1042 Zbl0379.12002MR441914
- Benjamin Howard, Tonghai Yang, Intersections of Hirzebruch-Zagier divisors and CM cycles, 2041 (2012), Springer, Heidelberg Zbl1238.11069MR2951750
- Shuji Konno, On Kronecker’s limit formula in a totally imaginary quadratic field over a totally real algebraic number field, J. Math. Soc. Japan 17 (1965), 411-424 Zbl0147.03603MR183708
- M. Ram Murty, V. Kumar Murty, Transcendental values of class group -functions, Math. Ann. 351 (2011), 835-855 Zbl1281.11071MR2854115
- M. Ram Murty, V. Kumar Murty, Transcendental values of class group -functions, II, Proc. Amer. Math. Soc. 140 (2012), 3041-3047 Zbl1282.11082MR2917077
- Carl Ludwig Siegel, Lectures on advanced analytic number theory, (1965), Tata Institute of Fundamental Research, Bombay Zbl0278.10001MR262150
- Michel Waldschmidt, Diophantine approximation on linear algebraic groups, 326 (2000), Springer-Verlag, Berlin Zbl0944.11024MR1756786
- Lawrence C. Washington, Introduction to cyclotomic fields, 83 (1997), Springer-Verlag, New York Zbl0484.12001MR1421575
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.