Dynamics of a small rigid body in a perfect incompressible fluid
- [1] CEREMADE, UMR CNRS 7534 Université Paris-Dauphine Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16, France
Journées Équations aux dérivées partielles (2014)
- page 1-20
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topGlass, Olivier. "Dynamics of a small rigid body in a perfect incompressible fluid." Journées Équations aux dérivées partielles (2014): 1-20. <http://eudml.org/doc/275626>.
@article{Glass2014,
abstract = {We consider a solid in a perfect incompressible fluid in dimension two. The fluid is driven by the classical Euler equation, and the solid evolves under the influence of the pressure on its surface. We consider the limit of the system as the solid shrinks to a point. We obtain several different models in the limit, according to the asymptotics for the mass and the moment of inertia, and according to the geometrical situation that we consider. Among the models that we get in the limit, we find Marchioro and Pulvirenti’s vortex-wave system and a variant of this system where the vortex, placed in the point occupied by the shrunk body, is accelerated by a lift force similar to the Kutta-Joukowski force. These results are obtained in collaboration with Christophe Lacave (Paris-Diderot), Alexandre Munnier (Nancy) and Franck Sueur (Bordeaux).},
affiliation = {CEREMADE, UMR CNRS 7534 Université Paris-Dauphine Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16, France},
author = {Glass, Olivier},
journal = {Journées Équations aux dérivées partielles},
language = {eng},
pages = {1-20},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Dynamics of a small rigid body in a perfect incompressible fluid},
url = {http://eudml.org/doc/275626},
year = {2014},
}
TY - JOUR
AU - Glass, Olivier
TI - Dynamics of a small rigid body in a perfect incompressible fluid
JO - Journées Équations aux dérivées partielles
PY - 2014
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 20
AB - We consider a solid in a perfect incompressible fluid in dimension two. The fluid is driven by the classical Euler equation, and the solid evolves under the influence of the pressure on its surface. We consider the limit of the system as the solid shrinks to a point. We obtain several different models in the limit, according to the asymptotics for the mass and the moment of inertia, and according to the geometrical situation that we consider. Among the models that we get in the limit, we find Marchioro and Pulvirenti’s vortex-wave system and a variant of this system where the vortex, placed in the point occupied by the shrunk body, is accelerated by a lift force similar to the Kutta-Joukowski force. These results are obtained in collaboration with Christophe Lacave (Paris-Diderot), Alexandre Munnier (Nancy) and Franck Sueur (Bordeaux).
LA - eng
UR - http://eudml.org/doc/275626
ER -
References
top- V. I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Grenoble) 16 (1966), fasc. 1, 319–361. Zbl0148.45301MR202082
- J. Berkowitz, C. S. Gardner, On the asymptotic series expansion of the motion of a charged particle in slowly varying fields. Comm. Pure Appl. Math. 12 (1959), 501-512. Zbl0128.21207MR108207
- C. Bjorland, The vortex-wave equation with a single vortex as the limit of the Euler equation. Comm. Math. Phys. Volume 305 (2011), Issue 1, 131–151. Zbl1219.35181MR2802302
- Y. Brenier, Convergence of the Vlasov-Poisson system to the incompressible Euler equations. Comm. Partial Differential Equations 25 (2000), no. 3-4, 737–754. Zbl0970.35110MR1748352
- M. Dashti, J. C. Robinson, The motion of a fluid-rigid disc system at the zero limit of the rigid disc radius, Arch. Ration. Mech. Anal. 200 (2011), no. 1, 285–312. Zbl1294.76082MR2781594
- R. J. DiPerna, A. J. Majda, Concentrations in regularizations for 2-D incompressible flow. Comm. Pure Appl. Math. 40 (1987), no. 3, 301–345. Zbl0850.76730MR882068
- D. Ebin, J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. of Math. 92 (1970), 102–163. Zbl0211.57401MR271984
- O. Glass, C. Lacave, F. Sueur, On the motion of a small disk immersed in a two dimensional incompressible perfect fluid, to appear in Bull. SMF. arXiv:1104.5404 Zbl1329.76048
- O. Glass, C. Lacave, F. Sueur, On the motion of a small light body immersed in a two dimensional incompressible perfect fluid with vorticity, Preprint 2014. Zbl1329.76048
- O. Glass, A. Munnier, F. Sueur, Dynamics of a point vortex as limits of a shrinking solid in an irrotational fluid. Preprint 2014. arXiv:1402.5387
- O. Glass, F. Sueur, On the motion of a rigid body in a two-dimensional irregular ideal flow. SIAM Journal Math. Analysis. Volume 44 (2013), Issue 5, 3101–3126. Zbl1325.76026MR3023405
- O. Glass, F. Sueur, The movement of a solid in an incompressible perfect fluid as a geodesic flow. Proc. Amer. Math. Soc. 140 (2012), no. 6, 2155–2168. Zbl1261.76009MR2888201
- O. Glass, F. Sueur, Uniqueness results for weak solutions of two-dimensional fluid-solid systems, Preprint 2012, arXiv:1203.2894. Zbl06481060MR2888201
- O. Glass, F. Sueur, T. Takahashi, Smoothness of the motion of a rigid body immersed in an incompressible perfect fluid, Ann. Sci. de l’École Normale Supérieure 45 (2012), fasc. 1, 1–51. Zbl1311.35217MR2961786
- C. Grotta Ragazzo, J. Koiller, W. M. Oliva, On the motion of two-dimensional vortices with mass. Nonlinear Sci. 4 (1994), no. 5, 375–418. Zbl0808.76015MR1291115
- J.-G. Houot, J. San Martin, M. Tucsnak, Existence and uniqueness of solutions for the equations modelling the motion of rigid bodies in a perfect fluid. J. Funct. Anal. 259 (2010), no. 11, 2856–2885. Zbl1200.35222MR2719277
- D. Iftimie, M. C. Lopes Filho, H. J. Nussenzveig Lopes, Two dimensional incompressible ideal flow around a small obstacle, Comm. Partial Diff. Eqns. 28 (2003), no. 12, 349–379. Zbl1094.76007MR1974460
- C. Lacave, Two-dimensional incompressible ideal flow around a small curve, Comm. Partial Diff. Eqns. 37:4 (2012), 690–731. Zbl1244.35107MR2901062
- C. Lacave, E. Miot, Uniqueness for the vortex-wave system when the vorticity is constant near the point vortex. SIAM J. Math. Anal. 41 (2009), no. 3, 1138–1163. Zbl1189.35259MR2529959
- H. Lamb, Hydrodynamics. Reprint of the 1932 sixth edition. Cambridge University Press, 1993. Zbl0828.01012MR1317348
- C. Marchioro, M. Pulvirenti, Vortices and localization in Euler flows. Comm. Math. Phys. Volume 154 (1993), Issue 1, 49–61. Zbl0774.35058MR1220946
- C. Marchioro, M. Pulvirenti, Mathematical theory of incompressible nonviscous fluids. Applied Mathematical Sciences 96, Springer-Verlag, 1994. Zbl0789.76002MR1245492
- A. Moussa, F. Sueur, On a Vlasov-Euler system for 2D sprays with gyroscopic effects. Asymptot. Anal. 81 (2013), no. 1, 53–91. Zbl1284.35440MR3060032
- A. Munnier, Locomotion of Deformable Bodies in an Ideal Fluid: Newtonian versus Lagrangian Formalisms. J. Nonlinear Sci (2009), no. 19, 665–715. Zbl1178.74055MR2559025
- J. Ortega, L. Rosier, T. Takahashi, On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), no. 1, 139–165. Zbl1168.35038MR2286562
- C. Rosier, L. Rosier, Smooth solutions for the motion of a ball in an incompressible perfect fluid. Journal of Functional Analysis, 256 (2009), no. 5, 1618–1641. Zbl1173.35105MR2490232
- A. L. Silvestre, T. Takahashi, The motion of a fluid-rigid ball system at the zero limit of the rigid ball radius. Arch. Ration. Mech. Anal. 211 (2014), no. 3, 991–1012. Zbl1293.35255MR3158813
- B. Turkington, On the evolution of a concentrated vortex in an ideal fluid. Arch. Rational Mech. Anal. 97 (1987), no. 1, 75-87. Zbl0623.76013MR856310
- J. Vankerschaver, E. Kanso, J. E. Marsden, The Geometry and Dynamics of Interacting Rigid Bodies and Point Vortices. J. Geom. Mech. 1 (2009), no. 2, 223-266. Zbl1191.53055MR2525759
- Y. Wang, Z. Xin, Existence of weak solutions for a two-dimensional fluid-rigid body system. J. Math. Fluid Mech. 15 (2013), no. 3, 553–566. Zbl1273.35228MR3084324
- V. I. Yudovich, Non-stationary flows of an ideal incompressible fluid, Ž. Vyčisl. Mat. i Mat. Fiz. 3 (1963), 1032–1066 (in Russian). English translation in USSR Comput. Math. & Math. Physics 3 (1963), 1407–1456. Zbl0147.44303MR158189
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.