Smoothness of the motion of a rigid body immersed in an incompressible perfect fluid
Olivier Glass; Franck Sueur; Takéo Takahashi
Annales scientifiques de l'École Normale Supérieure (2012)
- Volume: 45, Issue: 1, page 1-51
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] L. V. Ahlfors, Complex analysis, third éd., McGraw-Hill Book Co., 1978. Zbl0395.30001MR510197
- [2] C. Bardos & E. S. Titi, Loss of smoothness and energy conserving rough weak solutions for the Euler equations, Discrete Contin. Dyn. Syst. Ser. S3 (2010), 185–197. Zbl1191.76057MR2610558
- [3] J.-P. Bourguignon & H. Brezis, Remarks on the Euler equation, J. Functional Analysis15 (1974), 341–363. Zbl0279.58005MR344713
- [4] J.-Y. Chemin, Sur le mouvement des particules d’un fluide parfait incompressible bidimensionnel, Invent. Math.103 (1991), 599–629. Zbl0739.76010MR1091620
- [5] J.-Y. Chemin, Régularité de la trajectoire des particules d’un fluide parfait incompressible remplissant l’espace, J. Math. Pures Appl.71 (1992), 407–417. Zbl0833.35112MR1191582
- [6] J.-Y. Chemin, Fluides parfaits incompressibles, Astérisque 230 (1995). Zbl0829.76003MR1340046
- [7] A. Dutrifoy, Precise regularity results for the Euler equations, J. Math. Anal. Appl.282 (2003), 177–200. Zbl1048.35079MR2000337
- [8] P. Gamblin, Système d’Euler incompressible et régularité microlocale analytique, in Séminaire sur les Équations aux Dérivées Partielles, 1992–1993, École Polytech., 1993, exp. no 20. Zbl0876.35089MR1240561
- [9] P. Gamblin, Système d’Euler incompressible et régularité microlocale analytique, Ann. Inst. Fourier (Grenoble) 44 (1994), 1449–1475. Zbl0820.35111MR1313791
- [10] P. W. Gross & P. R. Kotiuga, Electromagnetic theory and computation: a topological approach, Mathematical Sciences Research Institute Publications 48, Cambridge Univ. Press, 2004. Zbl1096.78001MR2067778
- [11] J. G. Houot, J. San Martin & M. Tucsnak, Existence of solutions for the equations modeling the motion of rigid bodies in an ideal fluid, J. Funct. Anal.259 (2010), 2856–2885. Zbl1200.35222MR2719277
- [12] T. Kato, On the smoothness of trajectories in incompressible perfect fluids, in Nonlinear wave equations (Providence, RI, 1998), Contemp. Math. 263, Amer. Math. Soc., 2000, 109–130. Zbl0972.35102MR1777638
- [13] T. Kato, Two manuscripts left by late Professor Tosio Kato in his personal computer, Sūrikaisekikenkyūsho Kōkyūroku1234 (2001), 260–274. MR1906059
- [14] H. Koch, Transport and instability for perfect fluids, Math. Ann.323 (2002), 491–523. Zbl1006.76008MR1923695
- [15] J. H. Ortega, L. Rosier & T. Takahashi, Classical solutions for the equations modelling the motion of a ball in a bidimensional incompressible perfect fluid, M2AN Math. Model. Numer. Anal. 39 (2005), 79–108. Zbl1087.35081MR2136201
- [16] J. H. Ortega, L. Rosier & T. Takahashi, On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid, Ann. Inst. H. Poincaré Anal. Non Linéaire24 (2007), 139–165. Zbl1168.35038MR2286562
- [17] C. Rosier & L. Rosier, Smooth solutions for the motion of a ball in an incompressible perfect fluid, J. Funct. Anal.256 (2009), 1618–1641. Zbl1173.35105MR2490232
- [18] P. Serfati, Équation d’Euler et holomorphies à faible régularité spatiale, C. R. Acad. Sci. Paris Sér. I Math.320 (1995), 175–180. Zbl0834.34077MR1320351
- [19] P. Serfati, Solutions en temps, - Lipschitz bornées en espace et équation d’Euler, C. R. Acad. Sci. Paris Sér. I Math.320 (1995), 555–558. Zbl0835.76012MR1322336
- [20] P. Serfati, Structures holomorphes à faible régularité spatiale en mécanique des fluides, J. Math. Pures Appl.74 (1995), 95–104. Zbl0849.35111MR1325824
- [21] A. Shnirelman, Evolution of singularities, generalized Liapunov function and generalized integral for an ideal incompressible fluid, Amer. J. Math.119 (1997), 579–608. Zbl0874.93055MR1448216
- [22] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series 30, Princeton Univ. Press, 1970. Zbl0207.13501MR290095
- [23] V. Thilliez, On quasianalytic local rings, Expo. Math.26 (2008), 1–23. Zbl1139.32003MR2384272