Landau-Ginzburg models in real mirror symmetry
- [1] McGill University, Montréal, Canada CERN Physics Department, Theory Division Geneva, Switzerland
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 7, page 2865-2883
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topWalcher, Johannes. "Landau-Ginzburg models in real mirror symmetry." Annales de l’institut Fourier 61.7 (2011): 2865-2883. <http://eudml.org/doc/275627>.
@article{Walcher2011,
abstract = {In recent years, mirror symmetry for open strings has exhibited some new connections between symplectic and enumerative geometry (A-model) and complex algebraic geometry (B-model) that in a sense lie between classical and homological mirror symmetry. I review the rôle played in this story by matrix factorizations and the Calabi-Yau/Landau-Ginzburg correspondence.},
affiliation = {McGill University, Montréal, Canada CERN Physics Department, Theory Division Geneva, Switzerland},
author = {Walcher, Johannes},
journal = {Annales de l’institut Fourier},
keywords = {Mirror symmetry; Landau-Ginzburg models; matrix factorizations; algebraic cycles; real enumerative geometry; mirror symmetry},
language = {eng},
number = {7},
pages = {2865-2883},
publisher = {Association des Annales de l’institut Fourier},
title = {Landau-Ginzburg models in real mirror symmetry},
url = {http://eudml.org/doc/275627},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Walcher, Johannes
TI - Landau-Ginzburg models in real mirror symmetry
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 7
SP - 2865
EP - 2883
AB - In recent years, mirror symmetry for open strings has exhibited some new connections between symplectic and enumerative geometry (A-model) and complex algebraic geometry (B-model) that in a sense lie between classical and homological mirror symmetry. I review the rôle played in this story by matrix factorizations and the Calabi-Yau/Landau-Ginzburg correspondence.
LA - eng
KW - Mirror symmetry; Landau-Ginzburg models; matrix factorizations; algebraic cycles; real enumerative geometry; mirror symmetry
UR - http://eudml.org/doc/275627
ER -
References
top- M. Ballard, D. Favero, L. Katzarkov, A category of kernels for graded matrix factorizations and its implications for Hodge theory Zbl06381120
- I. Brunner, M. R. Douglas, A. E. Lawrence, C. Romelsberger, D-branes on the quintic, JHEP 0008 (2000) Zbl0989.81100
- I. Brunner, M. Herbst, W. Lerche, B. Scheuner, Landau-Ginzburg realization of open string TFT
- I. Brunner, K. Hori, K. Hosomichi, J. Walcher, Orientifolds of Gepner models, JHEP 0702 (2007) MR2317981
- R. O. Buchweitz, Maximal Cohen-Macaulay modules and Tate cohomology over Gorenstein rings
- P. Candelas, X. C. De La Ossa, P. S. Green, L. Parkes, A Pair Of Calabi-Yau Manifolds As An Exactly Soluble Superconformal Theory, Nucl. Phys. B 359 (1991) Zbl1098.32506MR1115626
- A. Chiodo, Y. Ruan, Landau-Ginzburg/Calabi-Yau correspondence for quintic three-folds via symplectic transformations, Invent. Math. 182 (2010), 117-165 Zbl1197.14043MR2672282
- B. Doran, F. Kirwan, Towards non-reductive geometric invariant theory, Pure and applied mathematics quarterly 3 (2007), 61-105 Zbl1143.14039MR2330155
- H. Fan, T. J. Jarvis, Y. Ruan, The Witten equation and its virtual fundamental cycle
- K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Lagrangian intersection Floer theory—anomaly and obstruction, (2009), AMS and International Press Zbl1181.53002
- A. B. Givental, Equivariant Gromov-Witten invariants, Internat. Math. Res. Notices (1996), 613-663 Zbl0881.55006MR1408320
- M. L. Green, Infinitesimal methods in Hodge theory, Algebraic cycles and Hodge theory 1594 (1994), 1-92, Springer Zbl0846.14001MR1335239
- B. R. Greene, M. R. Plesser, Duality in Calabi-Yau moduli space, Nucl. Phys. B 338 (1990) MR1059831
- B. R. Greene, C. Vafa, N. P. Warner, Calabi-Yau Manifolds and Renormalization Group Flows, Nucl. Phys. B 324 (1989) Zbl0744.53044MR1025421
- M. Herbst, K. Hori, D. Page, Phases Of N=2 Theories In 1+1 Dimensions With Boundary
- K. Hori, A. Iqbal, C. Vafa, D-branes and Mirror Symmetry
- K. Hori, C. Vafa, Mirror symmetry
- K. Hori, J. Walcher, D-branes from matrix factorizations. Talk at Strings ’04, June 28–July 2 2004, Paris, Comptes Rendus Physique 5 (2004) MR2121690
- K. Hori, J. Walcher, F-term equations near Gepner points, JHEP 0501 (2005) MR2134919
- K. Hori, J. Walcher, D-brane categories for orientifolds: The Landau-Ginzburg case, JHEP 0804 (2008) Zbl1246.81337MR2425273
- A. Kapustin, Y. Li, D-branes in Landau-Ginzburg models and algebraic geometry, JHEP 0312 (2003) MR2041170
- A. Kapustin, Y. Li, Topological Correlators in Landau-Ginzburg Models with Boundaries, Adv. Theor. Math. Phys. 7 (2004) Zbl1058.81061MR2039036
- M. Kontsevich, Enumeration of rational curves via torus actions Zbl0885.14028
- M. Kontsevich, Homological algebra of mirror symmetry, (1995), 120-139, [arXiv:math.ag/9411018], Birkhäuser Zbl0846.53021MR1403918
- B. .H. Lian, K. Liu, S.-T. Yau, Mirror Principle I, Surv. Differ. Geom. (1999) Zbl0999.14010MR1701925
- M. Mariño, Chern-Simons theory, matrix models and topological strings, 131 (2005), Oxford University Press, Oxford Zbl1093.81002MR2177747
- D. R. Morrison, Mirror symmetry and rational curves on quintic threefolds: a guide for mathematicians, J. Amer. Math. Soc. 6 (1993), 223-247 Zbl0843.14005MR1179538
- D. R. Morrison, M. R. Plesser, Towards mirror symmetry as duality for two dimensional abelian gauge theories, Nucl. Phys. Proc. Suppl. 46 (1996) Zbl0957.81656MR1411471
- D. R. Morrison, J. Walcher, D-branes and Normal Functions, Adv. Theor. Math. Phys. 13 (2009), 553-598 Zbl1166.81036MR2481273
- D. Orlov, Derived categories of coherent sheaves and triangulated categories of singularities Zbl0996.18007
- D. Orlov, Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Proc. Steklov Inst. Math. 246 (2004), 227-248 Zbl1101.81093MR2101296
- R. Pandharipande, J. Solomon, J. Walcher, Disk enumeration on the quintic 3-fold, J. Amer. Math. Soc. 21 (2008), 1169-1209 Zbl1203.53086MR2425184
- A. Polishchuk, A. Vaintrob, Chern characters and Hirzebruch-Riemann-Roch formula for matrix factorizations Zbl1249.14001
- A. Polishchuk, A. Vaintrob, Matrix factorizations and Cohomological Field Theories Zbl06576588
- J. Solomon, Intersection Theory on the Moduli Space of Holomorphic Curves with Lagrangian Boundary Conditions, (2006), MIT Thesis MR2717339
- A. Takahashi, Matrix Factorizations and Representations of Quivers I Zbl1167.16011
- D. van Straten, Index theorem for matrix factorizations, (2007), 22-26, Institute for Advanced Study, January
- J. Walcher, Residues and Normal Functions
- J. Walcher, Stability of Landau-Ginzburg branes, J. Math. Phys. 46 (2005) Zbl1110.81152MR2165838
- J. Walcher, Open Strings and Extended Mirror Symmetry, 54 (2006), Proc. BIRS Workshop Modular Forms and String Duality, June 3–8 Zbl1155.14312
- J. Walcher, Opening mirror symmetry on the quintic, Comm. Math. Phys. 276 (2007) Zbl1135.14030MR2350434
- J. Walcher, Extended Holomorphic Anomaly and Loop Amplitudes in Open Topological String, Nucl. Phys. B 817 (2009) Zbl1194.81219MR2522663
- E. Witten, Phases of N = 2 theories in two dimensions, Nucl. Phys. B 403 (1993) Zbl0910.14020MR1232617
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.