Landau-Ginzburg models in real mirror symmetry

Johannes Walcher[1]

  • [1] McGill University, Montréal, Canada CERN Physics Department, Theory Division Geneva, Switzerland

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 7, page 2865-2883
  • ISSN: 0373-0956

Abstract

top
In recent years, mirror symmetry for open strings has exhibited some new connections between symplectic and enumerative geometry (A-model) and complex algebraic geometry (B-model) that in a sense lie between classical and homological mirror symmetry. I review the rôle played in this story by matrix factorizations and the Calabi-Yau/Landau-Ginzburg correspondence.

How to cite

top

Walcher, Johannes. "Landau-Ginzburg models in real mirror symmetry." Annales de l’institut Fourier 61.7 (2011): 2865-2883. <http://eudml.org/doc/275627>.

@article{Walcher2011,
abstract = {In recent years, mirror symmetry for open strings has exhibited some new connections between symplectic and enumerative geometry (A-model) and complex algebraic geometry (B-model) that in a sense lie between classical and homological mirror symmetry. I review the rôle played in this story by matrix factorizations and the Calabi-Yau/Landau-Ginzburg correspondence.},
affiliation = {McGill University, Montréal, Canada CERN Physics Department, Theory Division Geneva, Switzerland},
author = {Walcher, Johannes},
journal = {Annales de l’institut Fourier},
keywords = {Mirror symmetry; Landau-Ginzburg models; matrix factorizations; algebraic cycles; real enumerative geometry; mirror symmetry},
language = {eng},
number = {7},
pages = {2865-2883},
publisher = {Association des Annales de l’institut Fourier},
title = {Landau-Ginzburg models in real mirror symmetry},
url = {http://eudml.org/doc/275627},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Walcher, Johannes
TI - Landau-Ginzburg models in real mirror symmetry
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 7
SP - 2865
EP - 2883
AB - In recent years, mirror symmetry for open strings has exhibited some new connections between symplectic and enumerative geometry (A-model) and complex algebraic geometry (B-model) that in a sense lie between classical and homological mirror symmetry. I review the rôle played in this story by matrix factorizations and the Calabi-Yau/Landau-Ginzburg correspondence.
LA - eng
KW - Mirror symmetry; Landau-Ginzburg models; matrix factorizations; algebraic cycles; real enumerative geometry; mirror symmetry
UR - http://eudml.org/doc/275627
ER -

References

top
  1. M. Ballard, D. Favero, L. Katzarkov, A category of kernels for graded matrix factorizations and its implications for Hodge theory Zbl06381120
  2. I. Brunner, M. R. Douglas, A. E. Lawrence, C. Romelsberger, D-branes on the quintic, JHEP 0008 (2000) Zbl0989.81100
  3. I. Brunner, M. Herbst, W. Lerche, B. Scheuner, Landau-Ginzburg realization of open string TFT 
  4. I. Brunner, K. Hori, K. Hosomichi, J. Walcher, Orientifolds of Gepner models, JHEP 0702 (2007) MR2317981
  5. R. O. Buchweitz, Maximal Cohen-Macaulay modules and Tate cohomology over Gorenstein rings 
  6. P. Candelas, X. C. De La Ossa, P. S. Green, L. Parkes, A Pair Of Calabi-Yau Manifolds As An Exactly Soluble Superconformal Theory, Nucl. Phys. B 359 (1991) Zbl1098.32506MR1115626
  7. A. Chiodo, Y. Ruan, Landau-Ginzburg/Calabi-Yau correspondence for quintic three-folds via symplectic transformations, Invent. Math. 182 (2010), 117-165 Zbl1197.14043MR2672282
  8. B. Doran, F. Kirwan, Towards non-reductive geometric invariant theory, Pure and applied mathematics quarterly 3 (2007), 61-105 Zbl1143.14039MR2330155
  9. H. Fan, T. J. Jarvis, Y. Ruan, The Witten equation and its virtual fundamental cycle 
  10. K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Lagrangian intersection Floer theory—anomaly and obstruction, (2009), AMS and International Press Zbl1181.53002
  11. A. B. Givental, Equivariant Gromov-Witten invariants, Internat. Math. Res. Notices (1996), 613-663 Zbl0881.55006MR1408320
  12. M. L. Green, Infinitesimal methods in Hodge theory, Algebraic cycles and Hodge theory 1594 (1994), 1-92, Springer Zbl0846.14001MR1335239
  13. B. R. Greene, M. R. Plesser, Duality in Calabi-Yau moduli space, Nucl. Phys. B 338 (1990) MR1059831
  14. B. R. Greene, C. Vafa, N. P. Warner, Calabi-Yau Manifolds and Renormalization Group Flows, Nucl. Phys. B 324 (1989) Zbl0744.53044MR1025421
  15. M. Herbst, K. Hori, D. Page, Phases Of N=2 Theories In 1+1 Dimensions With Boundary 
  16. K. Hori, A. Iqbal, C. Vafa, D-branes and Mirror Symmetry 
  17. K. Hori, C. Vafa, Mirror symmetry 
  18. K. Hori, J. Walcher, D-branes from matrix factorizations. Talk at Strings ’04, June 28–July 2 2004, Paris, Comptes Rendus Physique 5 (2004) MR2121690
  19. K. Hori, J. Walcher, F-term equations near Gepner points, JHEP 0501 (2005) MR2134919
  20. K. Hori, J. Walcher, D-brane categories for orientifolds: The Landau-Ginzburg case, JHEP 0804 (2008) Zbl1246.81337MR2425273
  21. A. Kapustin, Y. Li, D-branes in Landau-Ginzburg models and algebraic geometry, JHEP 0312 (2003) MR2041170
  22. A. Kapustin, Y. Li, Topological Correlators in Landau-Ginzburg Models with Boundaries, Adv. Theor. Math. Phys. 7 (2004) Zbl1058.81061MR2039036
  23. M. Kontsevich, Enumeration of rational curves via torus actions Zbl0885.14028
  24. M. Kontsevich, Homological algebra of mirror symmetry, (1995), 120-139, [arXiv:math.ag/9411018], Birkhäuser Zbl0846.53021MR1403918
  25. B. .H. Lian, K. Liu, S.-T. Yau, Mirror Principle I, Surv. Differ. Geom. (1999) Zbl0999.14010MR1701925
  26. M. Mariño, Chern-Simons theory, matrix models and topological strings, 131 (2005), Oxford University Press, Oxford Zbl1093.81002MR2177747
  27. D. R. Morrison, Mirror symmetry and rational curves on quintic threefolds: a guide for mathematicians, J. Amer. Math. Soc. 6 (1993), 223-247 Zbl0843.14005MR1179538
  28. D. R. Morrison, M. R. Plesser, Towards mirror symmetry as duality for two dimensional abelian gauge theories, Nucl. Phys. Proc. Suppl. 46 (1996) Zbl0957.81656MR1411471
  29. D. R. Morrison, J. Walcher, D-branes and Normal Functions, Adv. Theor. Math. Phys. 13 (2009), 553-598 Zbl1166.81036MR2481273
  30. D. Orlov, Derived categories of coherent sheaves and triangulated categories of singularities Zbl0996.18007
  31. D. Orlov, Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Proc. Steklov Inst. Math. 246 (2004), 227-248 Zbl1101.81093MR2101296
  32. R. Pandharipande, J. Solomon, J. Walcher, Disk enumeration on the quintic 3-fold, J. Amer. Math. Soc. 21 (2008), 1169-1209 Zbl1203.53086MR2425184
  33. A. Polishchuk, A. Vaintrob, Chern characters and Hirzebruch-Riemann-Roch formula for matrix factorizations Zbl1249.14001
  34. A. Polishchuk, A. Vaintrob, Matrix factorizations and Cohomological Field Theories Zbl06576588
  35. J. Solomon, Intersection Theory on the Moduli Space of Holomorphic Curves with Lagrangian Boundary Conditions, (2006), MIT Thesis MR2717339
  36. A. Takahashi, Matrix Factorizations and Representations of Quivers I Zbl1167.16011
  37. D. van Straten, Index theorem for matrix factorizations, (2007), 22-26, Institute for Advanced Study, January 
  38. J. Walcher, Residues and Normal Functions 
  39. J. Walcher, Stability of Landau-Ginzburg branes, J. Math. Phys. 46 (2005) Zbl1110.81152MR2165838
  40. J. Walcher, Open Strings and Extended Mirror Symmetry, 54 (2006), Proc. BIRS Workshop Modular Forms and String Duality, June 3–8 Zbl1155.14312
  41. J. Walcher, Opening mirror symmetry on the quintic, Comm. Math. Phys. 276 (2007) Zbl1135.14030MR2350434
  42. J. Walcher, Extended Holomorphic Anomaly and Loop Amplitudes in Open Topological String, Nucl. Phys. B 817 (2009) Zbl1194.81219MR2522663
  43. E. Witten, Phases of N = 2 theories in two dimensions, Nucl. Phys. B 403 (1993) Zbl0910.14020MR1232617

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.