Perturbed linear rough differential equations
Laure Coutin[1]; Antoine Lejay[2]
- [1] Institut de Mathématiques de Toulouse, F-31062 Toulouse Cedex 9, France.
- [2] Université de Lorraine, Institut Élie Cartan, UMR 7502, Vandœuvre-lès-Nancy, F-54600, France CNRS, Institut Élie Cartan, UMR 7502, Vandœuvre-lès-Nancy, F-54600, France Inria, Villers-lès-Nancy, F-54600, France
Annales mathématiques Blaise Pascal (2014)
- Volume: 21, Issue: 1, page 103-150
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topCoutin, Laure, and Lejay, Antoine. "Perturbed linear rough differential equations." Annales mathématiques Blaise Pascal 21.1 (2014): 103-150. <http://eudml.org/doc/275628>.
@article{Coutin2014,
abstract = {We study linear rough differential equations and we solve perturbed linear rough differential equations using the Duhamel principle. These results provide us with a key technical point to study the regularity of the differential of the Itô map in a subsequent article. Also, the notion of linear rough differential equations leads to consider multiplicative functionals with values in Banach algebras more general than tensor algebras and to consider extensions of classical results such as the Magnus and the Chen-Strichartz formula.},
affiliation = {Institut de Mathématiques de Toulouse, F-31062 Toulouse Cedex 9, France.; Université de Lorraine, Institut Élie Cartan, UMR 7502, Vandœuvre-lès-Nancy, F-54600, France CNRS, Institut Élie Cartan, UMR 7502, Vandœuvre-lès-Nancy, F-54600, France Inria, Villers-lès-Nancy, F-54600, France},
author = {Coutin, Laure, Lejay, Antoine},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Rough paths; Rough differential equations; Banach algebra; Magnus formula Chen-Strichartz formula; perturbation formula; Duhamel’s principle; rough paths; rough differential equations; Banach algebras; Magnus formula; Chen-Strichartz formula; Duhamel's principle},
language = {eng},
month = {1},
number = {1},
pages = {103-150},
publisher = {Annales mathématiques Blaise Pascal},
title = {Perturbed linear rough differential equations},
url = {http://eudml.org/doc/275628},
volume = {21},
year = {2014},
}
TY - JOUR
AU - Coutin, Laure
AU - Lejay, Antoine
TI - Perturbed linear rough differential equations
JO - Annales mathématiques Blaise Pascal
DA - 2014/1//
PB - Annales mathématiques Blaise Pascal
VL - 21
IS - 1
SP - 103
EP - 150
AB - We study linear rough differential equations and we solve perturbed linear rough differential equations using the Duhamel principle. These results provide us with a key technical point to study the regularity of the differential of the Itô map in a subsequent article. Also, the notion of linear rough differential equations leads to consider multiplicative functionals with values in Banach algebras more general than tensor algebras and to consider extensions of classical results such as the Magnus and the Chen-Strichartz formula.
LA - eng
KW - Rough paths; Rough differential equations; Banach algebra; Magnus formula Chen-Strichartz formula; perturbation formula; Duhamel’s principle; rough paths; rough differential equations; Banach algebras; Magnus formula; Chen-Strichartz formula; Duhamel's principle
UR - http://eudml.org/doc/275628
ER -
References
top- Shigeki Aida, Notes on Proofs of Continuity Theorem in Rough Path Analysis, (2006)
- Ismaël Bailleul, Flows driven by rough paths, (2012) Zbl06503642
- Andrew Baker, Matrix groups. An introduction to Lie group theory, (2002), Springer-Verlag London Ltd., London Zbl1009.22001MR1869885
- Fabrice Baudoin, An introduction to the geometry of stochastic flows, (2004), Imperial College Press, London Zbl1085.60002MR2154760
- Fabrice Baudoin, Xuejing Zhang, Taylor expansion for the solution of a stochastic differential equation driven by fractional Brownian motions, Electron. J. Probab. 17 (2012) Zbl1252.60052MR2955043
- Gérard Ben Arous, Flots et séries de Taylor stochastiques, Probab. Theory Related Fields 81 (1989), 29-77 Zbl0639.60062MR981567
- S. Blanes, F. Casas, J. A. Oteo, J. Ros, The Magnus expansion and some of its applications, Phys. Rep. 470 (2009), 151-238 MR2494199
- A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Stratified Lie groups and potential theory for their sub-Laplacians, (2007), Springer, Berlin Zbl1128.43001MR2363343
- Andrea Bonfiglioli, Roberta Fulci, Topics in noncommutative algebra. The theorem of Campbell, Baker, Hausdorff and Dynkin, 2034 (2012), Springer, Heidelberg Zbl1231.17001MR2883818
- M. Caruana, P. K. Friz, H. Oberhauser, A (rough) pathwise approach to a class of non-linear stochastic partial differential equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 28 (2011), 27-46 Zbl1219.60061MR2765508
- Michael Caruana, Peter Friz, Partial differential equations driven by rough paths, J. Differential Equations 247 (2009), 140-173 Zbl1167.35386MR2510132
- Fabienne Castell, Asymptotic expansion of stochastic flows, Probab. Theory Related Fields 96 (1993), 225-239 Zbl0794.60054MR1227033
- Fabienne Castell, Jessica Gaines, The ordinary differential equation approach to asymptotically efficient schemes for solution of stochastic differential equations, Ann. Inst. H. Poincaré Probab. Statist. 32 (1996), 231-250 Zbl0851.60054MR1386220
- Kuo-Tsai Chen, Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula, Ann. of Math. (2) 65 (1957), 163-178 Zbl0077.25301MR85251
- Kuo-Tsai Chen, Integration of paths—a faithful representation of paths by non-commutative formal power series, Trans. Amer. Math. Soc. 89 (1958), 395-407 Zbl0097.25803MR106258
- Kuo-Tsai Chen, Formal differential equations, Ann. of Math. (2) 73 (1961), 110-133 Zbl0098.05702MR150370
- Kuo-Tsai Chen, Expansion of solutions of differential systems, Arch. Rational Mech. Anal. 13 (1963), 348-363 Zbl0117.04802MR157032
- L. Coutin, Rough paths via sewing Lemma, ESAIM Probab. Stat. 16 (2012), 479-526 Zbl1277.47081
- L. Coutin, A. Lejay, Sensitivity of rough differential equations, (2013) Zbl1322.60084
- A.M. Davie, Differential Equations Driven by Rough Signals: an Approach via Discrete Approximation, Appl. Math. Res. Express. AMRX 2 (2007) Zbl1163.34005MR2387018
- A. Deya, M. Gubinelli, S. Tindel, Non-linear rough heat equations, Probab. Theory Related Fields 153 (2012), 97-147 Zbl1255.60106MR2925571
- Aurélien Deya, Samy Tindel, Rough Volterra equations. I. The algebraic integration setting, Stoch. Dyn. 9 (2009), 437-477 Zbl1181.60105MR2566910
- Aurélien Deya, Samy Tindel, Rough Volterra equations 2: Convolutional generalized integrals, Stochastic Process. Appl. 121 (2011), 1864-1899 Zbl1223.60031MR2811027
- Ronald G. Douglas, Banach algebra techniques in operator theory, 179 (1998), Springer-Verlag, New York Zbl0920.47001MR1634900
- F. J. Dyson, The radiation theories of Tomonaga, Schwinger, and Feynman, Physical Rev. (2) 75 (1949), 486-502 Zbl0032.23702MR28203
- Denis Feyel, Arnaud de La Pradelle, Curvilinear integrals along enriched paths, Electron. J. Probab. 11 (2006), no. 34, 860-892 (electronic) Zbl1110.60031MR2261056
- Denis Feyel, Arnaud de La Pradelle, Gabriel Mokobodzki, A non-commutative sewing lemma, Electron. Commun. Probab. 13 (2008), 24-34 Zbl1186.26009MR2372834
- Peter K. Friz, Nicolas B. Victoir, Multidimensional stochastic processes as rough paths. Theory and applications, 120 (2010), Cambridge University Press, Cambridge Zbl1193.60053MR2604669
- Massimiliano Gubinelli, Abstract integration, combinatorics of trees and differential equations, Combinatorics and physics 539 (2011), 135-151, Amer. Math. Soc., Providence, RI Zbl1225.35164MR2790306
- Massimiliano Gubinelli, Antoine Lejay, Samy Tindel, Young integrals and SPDEs, Potential Anal. 25 (2006), 307-326 Zbl1103.60062MR2255351
- Ernst Hairer, Christian Lubich, Gerhard Wanner, Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations, 31 (2010), Springer, Heidelberg Zbl1228.65237MR2840298
- M. Hairer, D. Kelly, Geometric versus non-geometric rough paths, (2012) Zbl1314.60115
- Brian C. Hall, Lie groups, Lie algebras, and representations. An elementary introduction, 222 (2003), Springer-Verlag, New York Zbl1026.22001MR1997306
- Keisuke Hara, Masanori Hino, Fractional order Taylor’s series and the neo-classical inequality, Bull. Lond. Math. Soc. 42 (2010), 467-477 Zbl1194.26027MR2651942
- Antoine Lejay, An introduction to rough paths, Séminaire de Probabilités XXXVII 1832 (2003), 1-59, Springer, Berlin Zbl1041.60051MR2053040
- Antoine Lejay, On rough differential equations, Electron. J. Probab. 14 (2009), no. 12, 341-364 Zbl1190.60044MR2480544
- Antoine Lejay, Yet another introduction to rough paths, Séminaire de Probabilités XLII 1979 (2009), 1-101, Springer, Berlin Zbl1041.60051MR2599204
- Antoine Lejay, Controlled differential equations as Young integrals: a simple approach, J. Differential Equations 249 (2010), 1777-1798 Zbl1216.34058MR2679003
- Antoine Lejay, Global solutions to rough differential equations with unbounded vector fields, Séminaire de Probabilités XLIV 2046 (2012), 215-246, Springer, Heidelberg Zbl1254.60059MR2953350
- Antoine Lejay, Nicolas Victoir, On -rough paths, J. Differential Equations 225 (2006), 103-133 Zbl1097.60048MR2228694
- Gabriel Lord, Simon J. A. Malham, Anke Wiese, Efficient strong integrators for linear stochastic systems, SIAM J. Numer. Anal. 46 (2008), 2892-2919 Zbl1179.60046MR2439496
- Terry Lyons, Zhongmin Qian, System control and rough paths, (2002), Oxford University Press, Oxford Zbl1029.93001MR2036784
- Terry J. Lyons, Differential equations driven by rough signals, Rev. Mat. Iberoamericana 14 (1998), 215-310 Zbl0923.34056MR1654527
- Terry J. Lyons, Michael Caruana, Thierry Lévy, Differential equations driven by rough paths (Lectures from the 34th Summer School on Probability Theory held in Saint-Flour, July 6–24, 2004), 1908 (2007), Springer, Berlin Zbl1176.60002MR2314753
- Terry J. Lyons, Nadia Sidorova, On the radius of convergence of the logarithmic signature, Illinois J. Math. 50 (2006), 763-790 (electronic) Zbl1103.60060MR2247845
- Terry J. Lyons, Weijun Xu, A uniform estimate for rough paths, Bull. Sci. Math. 137 (2013), 867-879 Zbl1296.60155MR3116217
- Wilhelm Magnus, On the exponential solution of differential equations for a linear operator, Comm. Pure Appl. Math. 7 (1954), 649-673 Zbl0056.34102MR67873
- Bogdan Mielnik, Jerzy Plebański, Combinatorial approach to Baker-Campbell-Hausdorff exponents, Ann. Inst. H. Poincaré Sect. A (N.S.) 12 (1970), 215-254 Zbl0206.13602MR273922
- Per Christian Moan, Jitse Niesen, Convergence of the Magnus series, Found. Comput. Math. 8 (2008), 291-301 Zbl1154.34307MR2413145
- Rimhak Ree, Lie elements and an algebra associated with shuffles, Ann. of Math. (2) 68 (1958), 210-220 Zbl0083.25401MR100011
- Christophe Reutenauer, Free Lie algebras, 7 (1993), The Clarendon Press Oxford University Press, New York Zbl0798.17001MR1231799
- Pocketbook of mathematical functions (Abridged edition of Handbook of mathematical functions edited by Milton Abramowitz and Irene A. Stegun), (1984), StegunIrene A.I. A., Thun Zbl0643.33002MR768931
- Robert S. Strichartz, The Campbell-Baker-Hausdorff-Dynkin formula and solutions of differential equations, J. Funct. Anal. 72 (1987), 320-345 Zbl0623.34058MR886816
- L. C. Young, An inequality of the Hölder type, connected with Stieltjes integration, Acta Math. 67 (1936), 251-282 Zbl0016.10404MR1555421
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.