Higher order duality and toric embeddings

Alicia Dickenstein[1]; Sandra Di Rocco[2]; Ragni Piene[3]

  • [1] Department of Mathematics, FCEN Universidad de Buenos Aires and IMAS - CONICET Ciudad Universitaria - Pab. I C1428EGA Buenos Aires Argentina
  • [2] Department of Mathematics Royal Institute of Technology (KTH) 10044 Stockholm Sweden
  • [3] CMA/Department of Mathematics University of Oslo P.O.Box 1053 Blindern NO-0316 Oslo Norway

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 1, page 375-400
  • ISSN: 0373-0956

Abstract

top
The notion of higher order dual varieties of a projective variety, introduced by Piene in 1983, is a natural generalization of the classical notion of projective duality. In this paper we study higher order dual varieties of projective toric embeddings. We express the degree of the second dual variety of a 2-jet spanned embedding of a smooth toric threefold in geometric and combinatorial terms, and we classify those whose second dual variety has dimension less than expected. We also describe the tropicalization of all higher order dual varieties of an equivariantly embedded (not necessarily normal) toric variety.

How to cite

top

Dickenstein, Alicia, Di Rocco, Sandra, and Piene, Ragni. "Higher order duality and toric embeddings." Annales de l’institut Fourier 64.1 (2014): 375-400. <http://eudml.org/doc/275645>.

@article{Dickenstein2014,
abstract = {The notion of higher order dual varieties of a projective variety, introduced by Piene in 1983, is a natural generalization of the classical notion of projective duality. In this paper we study higher order dual varieties of projective toric embeddings. We express the degree of the second dual variety of a 2-jet spanned embedding of a smooth toric threefold in geometric and combinatorial terms, and we classify those whose second dual variety has dimension less than expected. We also describe the tropicalization of all higher order dual varieties of an equivariantly embedded (not necessarily normal) toric variety.},
affiliation = {Department of Mathematics, FCEN Universidad de Buenos Aires and IMAS - CONICET Ciudad Universitaria - Pab. I C1428EGA Buenos Aires Argentina; Department of Mathematics Royal Institute of Technology (KTH) 10044 Stockholm Sweden; CMA/Department of Mathematics University of Oslo P.O.Box 1053 Blindern NO-0316 Oslo Norway},
author = {Dickenstein, Alicia, Di Rocco, Sandra, Piene, Ragni},
journal = {Annales de l’institut Fourier},
keywords = {toric variety; higher order projective duality; tropicalization},
language = {eng},
number = {1},
pages = {375-400},
publisher = {Association des Annales de l’institut Fourier},
title = {Higher order duality and toric embeddings},
url = {http://eudml.org/doc/275645},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Dickenstein, Alicia
AU - Di Rocco, Sandra
AU - Piene, Ragni
TI - Higher order duality and toric embeddings
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 1
SP - 375
EP - 400
AB - The notion of higher order dual varieties of a projective variety, introduced by Piene in 1983, is a natural generalization of the classical notion of projective duality. In this paper we study higher order dual varieties of projective toric embeddings. We express the degree of the second dual variety of a 2-jet spanned embedding of a smooth toric threefold in geometric and combinatorial terms, and we classify those whose second dual variety has dimension less than expected. We also describe the tropicalization of all higher order dual varieties of an equivariantly embedded (not necessarily normal) toric variety.
LA - eng
KW - toric variety; higher order projective duality; tropicalization
UR - http://eudml.org/doc/275645
ER -

References

top
  1. Th. Bauer, S. Di Rocco, T. Szemberg, Generation of jets on K3 surfaces, J. Pure Appl. Algebra 146 (2000), 17-27 Zbl0956.14002MR1733685
  2. M. Beltrametti, A. Sommese, The adjunction theory of complex projective varieties, 16 (1995), Walter de Gruyter & Co. Zbl0845.14003MR1318687
  3. R. Bieri, J. Groves, The geometry of the set of characters induced by valuations, J. reine angew. Math. 347 (1984), 168-195 Zbl0526.13003MR733052
  4. C. Casagrande, S. Di Rocco, Projective Q-factorial toric varieties covered by lines, Commun. Contemp. Math. 10 (2008), 363-389 Zbl1165.14036MR2417921
  5. V. I. Danilov, The geometry of toric varieties, Uspekhi Mat. Nauk 33 (1978), 85-134, 247 Zbl0425.14013MR495499
  6. W. Decker, G.-M. Greuel, G. Pfister, H. Schönemann, Singular 3-1-3 — A computer algebra system for polynomial computations, (2011) Zbl0902.14040
  7. M. Demazure, Sous-groupes algébriques de rang maximum du groupe de Cremona, Ann. Sci. École Norm. Sup. 3 (1970), 507-588 Zbl0223.14009MR284446
  8. S. Di Rocco, Generation of k -jets on toric varieties, Math. Z. 231 (1999), 169-188 Zbl0941.14020MR1696762
  9. S. Di Rocco, Projective duality of toric manifolds and defect polytopes, Proc. London Math. Soc. 93 (2006), 85-104 Zbl1098.14039MR2235483
  10. Sandra Di Rocco, Christian Haase, Benjamin Nill, Andreas Paffenholz, Polyhedral adjunction theory, Algebra Number Theory 7 (2013), 2417-2446 Zbl1333.14010MR3194647
  11. A. Dickenstein, E. M. Feichtner, B. Sturmfels, Tropical discriminants, J. Amer. Math. Soc. 20 (2007), 1111-1133 Zbl1166.14033MR2328718
  12. A. Dickenstein, L. F. Tabera, Singular tropical hypersurfaces, Discrete Comput. Geom 47 (2012), 430-453 Zbl1239.14055MR2872547
  13. L. Ein, Varieties with small dual varieties. II, Duke Math. J. 52 (1985), 895-907 Zbl0603.14026MR816391
  14. L. Ein, Varieties with small dual varieties. I, Invent. Math. 86 (1986), 63-74 Zbl0603.14025MR853445
  15. M. Einsiedler, M. Kapranov, D. Lind, Non-Archimedean amoebas and tropical varieties, J. Reine Angew. Math. 601 (2006), 139-157 Zbl1115.14051MR2289207
  16. T. Fujita, On polarized manifolds whose adjoint bundles are not semipositive, Algebraic geometry, Sendai, 1985 10 (1987), 167-178, North-Holland, Amsterdam Zbl0659.14002MR946238
  17. I. M. Gel’fand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, (1994), Birkhäuser Boston Inc. Zbl1138.14001MR1264417
  18. N. Grigg, Factorization of tropical polynomials in one and several variables, Honor’s Thesis, Brigham Young University (June 2007) 
  19. A. Lanteri, R. Mallavibarrena, Higher order dual varieties of projective surfaces, Comm. Algebra 27 (1999), 4827-4851 Zbl0997.14010MR1709226
  20. A. Lanteri, R. Mallavibarrena, Osculatory behavior and second dual varieties of del Pezzo surfaces, Adv. Geom. 1 (2001), 345-363 Zbl0982.14030MR1881745
  21. A. Lanteri, R. Mallavibarrena, R. Piene, Inflectional loci of scrolls, Math. Z. 258 (2008), 557-564 Zbl1143.14031MR2369044
  22. Antonio Lanteri, Raquel Mallavibarrena, Ragni Piene, Inflectional loci of scrolls over smooth, projective varieties, Indiana Univ. Math. J. 61 (2012), 717-750 Zbl1273.14015MR3043593
  23. Raquel Mallavibarrena, Ragni Piene, Duality for elliptic normal surface scrolls, Enumerative algebraic geometry (Copenhagen, 1989) 123 (1991), 149-160, Amer. Math. Soc., Providence, RI Zbl0758.14037MR1143552
  24. Y. Matsui, K. Takeuchi, A geometric degree formula for A -discriminants and Euler obstructions of toric varieties, Adv. Math. 226 (2011), 2040-2064 Zbl1205.14062MR2737807
  25. M. Mustaţă, Vanishing theorems on toric varieties, Tohoku Math. J. 54 (2002), 451-470 Zbl1092.14064MR1916637
  26. R. Piene, A note on higher order dual varieties, with an application to scrolls, Singularities, Part 2 (Arcata, Calif., 1981) 40 (1983), 335-342, Amer. Math. Soc., Providence, RI Zbl0515.14031MR713259
  27. R. Piene, G. Sacchiero, Duality for rational normal scrolls, Comm. Algebra 12 (1984), 1041-1066 Zbl0539.14027MR738534
  28. Felipe Rincón, Computing tropical linear spaces, J. Symbolic Comput. 51 (2013), 86-98 Zbl1319.14060MR3005783
  29. B. Sturmfels, Solving systems of polynomial equations, 97 (2002), Amer. Math. Soc. Zbl1101.13040MR1925796
  30. J. Tevelev, Compactifications of subvarieties of tori, Amer. J. Math. 129 (2007), 1087-1104 Zbl1154.14039MR2343384

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.