On closed subgroups of the group of homeomorphisms of a manifold
- [1] Institut de Mathématiques de Jussieu-Paris Rive Gauche, Université Pierre et Marie Curie 4, place Jussieu, Case 247, 75252 Paris Cedex 5, France
Journal de l’École polytechnique — Mathématiques (2014)
- Volume: 1, page 147-159
- ISSN: 2270-518X
Access Full Article
topAbstract
topHow to cite
topLe Roux, Frédéric. "On closed subgroups of the group of homeomorphisms of a manifold." Journal de l’École polytechnique — Mathématiques 1 (2014): 147-159. <http://eudml.org/doc/275648>.
@article{LeRoux2014,
abstract = {Let $M$ be a triangulable compact manifold. We prove that, among closed subgroups of $\mathrm\{Homeo\}_\{0\}(M)$ (the identity component of the group of homeomorphisms of $M$), the subgroup consisting of volume preserving elements is maximal.},
affiliation = {Institut de Mathématiques de Jussieu-Paris Rive Gauche, Université Pierre et Marie Curie 4, place Jussieu, Case 247, 75252 Paris Cedex 5, France},
author = {Le Roux, Frédéric},
journal = {Journal de l’École polytechnique — Mathématiques},
keywords = {Transformation groups; homeomorphisms; maximal closed subgroups; transformation groups},
language = {eng},
pages = {147-159},
publisher = {École polytechnique},
title = {On closed subgroups of the group of homeomorphisms of a manifold},
url = {http://eudml.org/doc/275648},
volume = {1},
year = {2014},
}
TY - JOUR
AU - Le Roux, Frédéric
TI - On closed subgroups of the group of homeomorphisms of a manifold
JO - Journal de l’École polytechnique — Mathématiques
PY - 2014
PB - École polytechnique
VL - 1
SP - 147
EP - 159
AB - Let $M$ be a triangulable compact manifold. We prove that, among closed subgroups of $\mathrm{Homeo}_{0}(M)$ (the identity component of the group of homeomorphisms of $M$), the subgroup consisting of volume preserving elements is maximal.
LA - eng
KW - Transformation groups; homeomorphisms; maximal closed subgroups; transformation groups
UR - http://eudml.org/doc/275648
ER -
References
top- M. Bestvina, Questions in geometric group theory, collected by M. Bestvina, (2004)
- M. Brown, A mapping theorem for untriangulated manifolds, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) (1962), 92-94, Prentice-Hall, Englewood Cliffs, N.J. Zbl1246.57052MR158374
- A. Fathi, Structure of the group of homeomorphisms preserving a good measure on a compact manifold, Ann. Sci. École Norm. Sup. (4) 13 (1980), 45-93 Zbl0443.58011MR584082
- É. Ghys, Groups acting on the circle, Enseign. Math. (2) 47 (2001), 329-407 Zbl1044.37033MR1876932
- J. Giblin, V. Markovic, Classification of continuously transitive circle groups, Geom. Topol. 10 (2006), 1319-1346 Zbl1126.37025MR2255499
- C. Goffman, G. Pedrick, A proof of the homeomorphism of Lebesgue-Stieltjes measure with Lebesgue measure, Proc. Amer. Math. Soc. 52 (1975), 196-198 Zbl0326.28002MR376995
- R. C. Kirby, Stable homeomorphisms and the annulus conjecture, Ann. of Math. (2) 89 (1969), 575-582 Zbl0176.22004MR242165
- F. Kwakkel, F. Tal, Homogeneous transformation groups of the sphere, (2013)
- A. Navas, Grupos de difeomorfismos del círculo, 13 (2007), Sociedade Brasileira de Matemática, Rio de Janeiro Zbl1163.37002
- J. C. Oxtoby, S. M. Ulam, Measure-preserving homeomorphisms and metrical transitivity, Ann. of Math. (2) 42 (1941), 874-920 Zbl0063.06074MR5803
- F. Quinn, Ends of maps. III. Dimensions and , J. Differential Geom. 17 (1982), 503-521 Zbl0533.57009MR679069
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.