Properties of time-dependent statistical solutions of the three-dimensional Navier-Stokes equations

Ciprian Foias[1]; Ricardo M. S. Rosa[2]; Roger Temam[3]

  • [1] Texas A&M University Department of Mathematics College Station, TX 77843 (USA)
  • [2] Universidade Federal do Rio de Janeiro Instituto de Matemática Caixa Postal 68530 Ilha do Fundão Rio de Janeiro, RJ 21945-970 (Brazil)
  • [3] Indiana University Department of Mathematics Bloomington, IN 47405 (USA)

Annales de l’institut Fourier (2013)

  • Volume: 63, Issue: 6, page 2515-2573
  • ISSN: 0373-0956

Abstract

top
This work is devoted to the concept of statistical solution of the Navier-Stokes equations, proposed as a rigorous mathematical object to address the fundamental concept of ensemble average used in the study of the conventional theory of fully developed turbulence. Two types of statistical solutions have been proposed in the 1970’s, one by Foias and Prodi and the other one by Vishik and Fursikov. In this article, a new, intermediate type of statistical solution is introduced and studied. This solution is a particular type of a statistical solution in the sense of Foias and Prodi which is constructed in a way akin to the definition given by Vishik and Fursikov, in such a way that it possesses a number of useful analytical properties.

How to cite

top

Foias, Ciprian, Rosa, Ricardo M. S., and Temam, Roger. "Properties of time-dependent statistical solutions of the three-dimensional Navier-Stokes equations." Annales de l’institut Fourier 63.6 (2013): 2515-2573. <http://eudml.org/doc/275649>.

@article{Foias2013,
abstract = {This work is devoted to the concept of statistical solution of the Navier-Stokes equations, proposed as a rigorous mathematical object to address the fundamental concept of ensemble average used in the study of the conventional theory of fully developed turbulence. Two types of statistical solutions have been proposed in the 1970’s, one by Foias and Prodi and the other one by Vishik and Fursikov. In this article, a new, intermediate type of statistical solution is introduced and studied. This solution is a particular type of a statistical solution in the sense of Foias and Prodi which is constructed in a way akin to the definition given by Vishik and Fursikov, in such a way that it possesses a number of useful analytical properties.},
affiliation = {Texas A&M University Department of Mathematics College Station, TX 77843 (USA); Universidade Federal do Rio de Janeiro Instituto de Matemática Caixa Postal 68530 Ilha do Fundão Rio de Janeiro, RJ 21945-970 (Brazil); Indiana University Department of Mathematics Bloomington, IN 47405 (USA)},
author = {Foias, Ciprian, Rosa, Ricardo M. S., Temam, Roger},
journal = {Annales de l’institut Fourier},
keywords = {Navier-Stokes equations; statistical solutions; turbulence; measure theory; functional analysis},
language = {eng},
number = {6},
pages = {2515-2573},
publisher = {Association des Annales de l’institut Fourier},
title = {Properties of time-dependent statistical solutions of the three-dimensional Navier-Stokes equations},
url = {http://eudml.org/doc/275649},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Foias, Ciprian
AU - Rosa, Ricardo M. S.
AU - Temam, Roger
TI - Properties of time-dependent statistical solutions of the three-dimensional Navier-Stokes equations
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 6
SP - 2515
EP - 2573
AB - This work is devoted to the concept of statistical solution of the Navier-Stokes equations, proposed as a rigorous mathematical object to address the fundamental concept of ensemble average used in the study of the conventional theory of fully developed turbulence. Two types of statistical solutions have been proposed in the 1970’s, one by Foias and Prodi and the other one by Vishik and Fursikov. In this article, a new, intermediate type of statistical solution is introduced and studied. This solution is a particular type of a statistical solution in the sense of Foias and Prodi which is constructed in a way akin to the definition given by Vishik and Fursikov, in such a way that it possesses a number of useful analytical properties.
LA - eng
KW - Navier-Stokes equations; statistical solutions; turbulence; measure theory; functional analysis
UR - http://eudml.org/doc/275649
ER -

References

top
  1. Charalambos D. Aliprantis, Kim C. Border, Infinite dimensional analysis, (2006), Springer, Berlin Zbl1156.46001MR2378491
  2. J. M. Ball, Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations, J. Nonlinear Sci. 7 (1997), 475-502 Zbl0903.58020MR1462276
  3. Arnaud Basson, Homogeneous statistical solutions and local energy inequality for 3D Navier-Stokes equations, Comm. Math. Phys. 266 (2006), 17-35 Zbl1106.76017MR2231964
  4. G. K. Batchelor, The theory of homogeneous turbulence, (1953), Cambridge at the University Press Zbl0053.14404MR52268
  5. H. Bercovici, P. Constantin, C. Foias, O. P. Manley, Exponential decay of the power spectrum of turbulence, J. Statist. Phys. 80 (1995), 579-602 Zbl1081.35505MR1342242
  6. N. Bourbaki, Éléments de mathématique. Fasc. XXXV. Livre VI: Intégration. Chapitre IX: Intégration sur les espaces topologiques séparés, (1969), Hermann, Paris Zbl0189.14201MR276436
  7. Arlen Brown, Carl Pearcy, Introduction to operator theory. I, (1977), Springer-Verlag, New York Zbl0371.47001MR511596
  8. P. Constantin, C. Foias, R. Temam, Attractors representing turbulent flows, Mem. Amer. Math. Soc. 53 (1985) Zbl0567.35070MR776345
  9. Peter Constantin, Charles R. Doering, Variational bounds on energy dissipation in incompressible flows: shear flow, Phys. Rev. E (3) 49 (1994), 4087-4099 MR1380238
  10. Peter Constantin, Charles R. Doering, Variational bounds on energy dissipation in incompressible flows. II. Channel flow, Phys. Rev. E (3) 51 (1995), 3192-3198 MR1384734
  11. Peter Constantin, Ciprian Foias, Navier-Stokes equations, (1988), University of Chicago Press, Chicago, IL Zbl0687.35071MR972259
  12. R. Dascaliuc, A generalization of the energy inequality for the Leray-Hopf solutions of the 3D periodic Navier-Stokes equations Zbl1076.76021
  13. Charles R. Doering, Edriss S. Titi, Exponential decay rate of the power spectrum for solutions of the Navier-Stokes equations, Phys. Fluids 7 (1995), 1384-1390 Zbl1023.76513MR1331063
  14. Nelson Dunford, Jacob T. Schwartz, Linear Operators. I. General Theory, (1958), Interscience Publishers, Inc., New York Zbl0084.10402MR117523
  15. Ciprian Foias, Statistical study of Navier-Stokes equations. I, Rend. Sem. Mat. Univ. Padova 48 (1972), 219-348 Zbl0283.76017MR352733
  16. Ciprian Foias, A functional approach to turbulence, Russian Math. Survey 29 (1974), 293-336 Zbl0305.35079
  17. Ciprian Foias, M. S. Jolly, O. P. Manley, R. Rosa, R. Temam, Kolmogorov theory via finite-time averages, Phys. D 212 (2005), 245-270 Zbl1083.35091MR2187512
  18. Ciprian Foias, O. Manley, R. Rosa, R. Temam, Navier-Stokes equations and turbulence, 83 (2001), Cambridge University Press, Cambridge Zbl1139.35001MR1855030
  19. Ciprian Foias, Oscar P. Manley, Ricardo M. S. Rosa, Roger Temam, Cascade of energy in turbulent flows, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), 509-514 Zbl0986.35089MR1834060
  20. Ciprian Foias, Oscar P. Manley, Ricardo M. S. Rosa, Roger Temam, Estimates for the energy cascade in three-dimensional turbulent flows, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), 499-504 Zbl1172.76319MR1859244
  21. Ciprian Foias, G. Prodi, Sur les solutions statistiques des équations de Navier-Stokes, Ann. Mat. Pura Appl. (4) 111 (1976), 307-330 Zbl0344.76015MR492968
  22. Ciprian Foias, Ricardo M. S. Rosa, Roger Temam, Properties of stationary statistical solutions of the three-dimensional Navier-Stokes equations Zbl1186.35142
  23. Ciprian Foias, Ricardo M. S. Rosa, Roger Temam, A note on statistical solutions of the three-dimensional Navier-Stokes equations: the stationary case, C. R. Math. Acad. Sci. Paris 348 (2010), 347-353 Zbl1186.35142MR2600137
  24. Ciprian Foias, Ricardo M. S. Rosa, Roger Temam, A note on statistical solutions of the three-dimensional Navier-Stokes equations: the time-dependent case, C. R. Math. Acad. Sci. Paris 348 (2010), 235-240 Zbl1186.35141MR2600084
  25. Ciprian Foias, Ricardo M. S. Rosa, Roger Temam, Topological properties of the weak global attractor of the three-dimensional Navier-Stokes equations, Discrete Contin. Dyn. Syst. 27 (2010), 1611-1631 Zbl1191.35204MR2629540
  26. U. Frisch, Turbulence, The legacy of A. N. Kolmogorov, Cambridge University Press (1995) Zbl0832.76001MR1428905
  27. J. O. Hinze, Turbulence, (1975), McGraw-Hill Book Co., New York 
  28. Eberhard Hopf, Statistical hydromechanics and functional calculus, J. Rational Mech. Anal. 1 (1952), 87-123 Zbl0049.41704MR59119
  29. L.N. Howard, Bounds on flow quantities, Annu. Rev. Fluid Mech. 4 (1972), 473-494 Zbl0292.76039
  30. A. N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, C. R. (Doklady) Acad. Sci. USSR (N. S.) 30 (1941), 301-305 Zbl67.0850.06MR4146
  31. A. N. Kolmogorov, On degeneration of isotropic turbulence in an incompressible viscous liquid, C. R. (Doklady) Acad. Sci. USSR (N. S.) 31 (1941), 538-540 Zbl0026.17001MR4568
  32. K. Kuratowski, Topology. Vol. I, (1966), Academic Press, New York Zbl0158.40802MR217751
  33. O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, (1963), Gordon and Breach Science Publishers, New York Zbl0121.42701MR155093
  34. Jean Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math. 63 (1934), 193-248 MR1555394
  35. Marcel Lesieur, Turbulence in fluids, 40 (1997), Kluwer Academic Publishers Group, Dordrecht Zbl0876.76002MR1447438
  36. A. S. Monin, A. M. Yaglom, Statistical fluid mechanics: mechanics of turbulence, Vol. I and II, (2007), Dover Publications Inc., Mineola, NY Zbl1140.76004MR2406667
  37. Yiannis N. Moschovakis, Descriptive set theory, 100 (1980), North-Holland Publishing Co., Amsterdam Zbl1172.03026MR561709
  38. F. Ramos, R. Rosa, R. Temam, Statistical estimates for channel flows driven by a pressure gradient, Phys. D 237 (2008), 1368-1387 Zbl1143.76421MR2454594
  39. O. Reynolds, On the dynamical theory of incompressible viscous fluids and the determination of the criterion, Proc. Roy. Soc. London Ser. A 451 (1995), 5-47 MR1363190
  40. Walter Rudin, Real and complex analysis, (1987), McGraw-Hill Book Co., New York Zbl0142.01701MR924157
  41. G.I. Taylor, Statistical theory of turbulence, Proc. Roy. Soc. London Ser. A 151 (1935), 421-478 Zbl61.0926.02
  42. G.I. Taylor, The spectrum of turbulence, Proc. Roy. Soc. London Ser. A 164 (1938), 476-490 Zbl64.1454.02
  43. Roger Temam, Navier-Stokes equations, 2 (1984), North-Holland Publishing Co., Amsterdam Zbl0426.35003MR769654
  44. Roger Temam, Navier-Stokes equations and nonlinear functional analysis, 66 (1995), Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA Zbl0833.35110MR1318914
  45. M. I. Višik, A. V. Fursikov, Translationally homogeneous statistical solutions and individual solutions with infinite energy of a system of Navier-Stokes equations, Siberian Mathematical Journal 19 (1978), 710-729 Zbl0412.35078MR508497
  46. M. I. Višik, A. V. Fursikov, Mathematical Problems of Statistical Hydrodynamics, (1988), Kluwer, Dordrecht Zbl0626.35002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.