Groups of given intermediate word growth
Laurent Bartholdi[1]; Anna Erschler[2]
- [1] Georg-August Universität L.B.: Mathematisches Institut Bunsenstraße 3–5 D-37073 Göttingen (Germany)
- [2] A.E.: C.N.R.S. Université Paris Sud Département de Mathématiques Bâtiment 425 91405 Orsay (France)
Annales de l’institut Fourier (2014)
- Volume: 64, Issue: 5, page 2003-2036
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBartholdi, Laurent, and Erschler, Anna. "Groups of given intermediate word growth." Annales de l’institut Fourier 64.5 (2014): 2003-2036. <http://eudml.org/doc/275656>.
@article{Bartholdi2014,
abstract = {We show that there exists a finitely generated group of growth $\{\sim \} f$ for all functions $f\colon \mathbb\{R\}_+\rightarrow \mathbb\{R\}_+$ satisfying $f(2R)\le f(R)^2\le f(\eta _+R)$ for all $R$ large enough and $\eta _+\approx 2.4675$ the positive root of $X^3-X^2-2X-4$. Set $\alpha _-=\log 2/\log \eta _+\approx 0.7674$; then all functions that grow uniformly faster than $\exp (R^\{\alpha _-\})$ are realizable as the growth of a group.We also give a family of sum-contracting branched groups of growth $\sim \exp (R^\alpha )$ for a dense set of $\alpha \in [\alpha _-,1]$.},
affiliation = {Georg-August Universität L.B.: Mathematisches Institut Bunsenstraße 3–5 D-37073 Göttingen (Germany); A.E.: C.N.R.S. Université Paris Sud Département de Mathématiques Bâtiment 425 91405 Orsay (France)},
author = {Bartholdi, Laurent, Erschler, Anna},
journal = {Annales de l’institut Fourier},
keywords = {Growth of groups; self-similar groups; groups acting on trees; wreath products; growth of groups; finitely generated groups; groups of intermediate growth; growth functions; Grigorchuk groups},
language = {eng},
number = {5},
pages = {2003-2036},
publisher = {Association des Annales de l’institut Fourier},
title = {Groups of given intermediate word growth},
url = {http://eudml.org/doc/275656},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Bartholdi, Laurent
AU - Erschler, Anna
TI - Groups of given intermediate word growth
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 5
SP - 2003
EP - 2036
AB - We show that there exists a finitely generated group of growth ${\sim } f$ for all functions $f\colon \mathbb{R}_+\rightarrow \mathbb{R}_+$ satisfying $f(2R)\le f(R)^2\le f(\eta _+R)$ for all $R$ large enough and $\eta _+\approx 2.4675$ the positive root of $X^3-X^2-2X-4$. Set $\alpha _-=\log 2/\log \eta _+\approx 0.7674$; then all functions that grow uniformly faster than $\exp (R^{\alpha _-})$ are realizable as the growth of a group.We also give a family of sum-contracting branched groups of growth $\sim \exp (R^\alpha )$ for a dense set of $\alpha \in [\alpha _-,1]$.
LA - eng
KW - Growth of groups; self-similar groups; groups acting on trees; wreath products; growth of groups; finitely generated groups; groups of intermediate growth; growth functions; Grigorchuk groups
UR - http://eudml.org/doc/275656
ER -
References
top- Laurent Bartholdi, The growth of Grigorchuk’s torsion group, Internat. Math. Res. Notices (1998), 1049-1054 Zbl0942.20027MR1656258
- Laurent Bartholdi, Lower bounds on the growth of a group acting on the binary rooted tree, Internat. J. Algebra Comput. 11 (2001), 73-88 Zbl1028.20025MR1818662
- Laurent Bartholdi, Endomorphic presentations of branch groups, J. Algebra 268 (2003), 419-443 Zbl1044.20015MR2009317
- Laurent Bartholdi, Anna Erschler, Growth of permutational extensions, Invent. Math. 189 (2012), 431-455 Zbl1286.20025MR2947548
- Laurent Bartholdi, Anna G. Erschler, Poisson-Furstenberg boundary and growth of groups Zbl1317.20043
- Laurent Bartholdi, Rostislav I. Grigorchuk, Zoran Šuniḱ, Branch groups, Handbook of algebra, Vol. 3 (2003), 989-1112, North-Holland, Amsterdam Zbl1140.20306MR2035113
- Laurent Bartholdi, Agata Smoktunowicz, Images of Golod-Shafarevich algebras with small growth Zbl1312.16017MR3230369
- Laurent Bartholdi, Zoran Šuniḱ, On the word and period growth of some groups of tree automorphisms, Comm. Algebra 29 (2001), 4923-4964 Zbl1001.20027MR1856923
- Garrett Birkhoff, Extensions of Jentzsch’s theorem, Trans. Amer. Math. Soc. 85 (1957), 219-227 Zbl0079.13502MR87058
- Jérémie Brieussel, Growth behaviours in the range Zbl1337.20041
- Jérémie Brieussel, Growth of certain groups of automorphisms of rooted trees, (2008) Zbl1227.43001
- L. Carlitz, A. Wilansky, John Milnor, R. A. Struble, Neal Felsinger, J. M. S. Simoes, E. A. Power, R. E. Shafer, R. E. Maas, Problems and Solutions: Advanced Problems: 5600-5609, Amer. Math. Monthly 75 (1968), 685-687 MR1534960
- Yves de Cornulier, Finitely presented wreath products and double coset decompositions, Geom. Dedicata 122 (2006), 89-108 Zbl1137.20019MR2295543
- Anna Erschler, Boundary behavior for groups of subexponential growth, Ann. of Math. (2) 160 (2004), 1183-1210 Zbl1089.20025MR2144977
- Anna Erschler, Critical constants for recurrence of random walks on -spaces, Ann. Inst. Fourier (Grenoble) 55 (2005), 493-509 Zbl1133.20031MR2147898
- A. G. Èrshler, On the degrees of growth of finitely generated groups, Funktsional. Anal. i Prilozhen. 39 (2005), 86-89 Zbl1122.20016MR2197519
- R. I. Grigorchuk, On the Milnor problem of group growth, Dokl. Akad. Nauk SSSR 271 (1983), 30-33 Zbl0547.20025MR712546
- R. I. Grigorchuk, Degrees of growth of finitely generated groups and the theory of invariant means, Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), 939-985 Zbl0583.20023MR764305
- R. I. Grigorchuk, Degrees of growth of -groups and torsion-free groups, Mat. Sb. (N.S.) 126(168) (1985), 194-214, 286 Zbl0568.20033MR784354
- R. I. Grigorchuk, A. Machì, An example of an indexed language of intermediate growth, Theoret. Comput. Sci. 215 (1999), 325-327 Zbl0913.68121MR1678812
- Mikhael Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. (1981), 53-73 Zbl0474.20018MR623534
- Pierre de la Harpe, Topics in geometric group theory, (2000), University of Chicago Press, Chicago, IL Zbl0965.20025MR1786869
- Martin Kassabov, Igor Pak, Groups of oscillating intermediate growth, Ann. of Math. (2) 177 (2013), 1113-1145 Zbl1283.20027MR3034295
- Günter R. Krause, Thomas H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, 22 (2000), American Mathematical Society, Providence, RI Zbl0957.16001MR1721834
- Yu. G. Leonov, On a lower bound for the growth function of the Grigorchuk group, Mat. Zametki 67 (2000), 475-477 Zbl0984.20020MR1779480
- Avinoam Mann, How groups grow, 395 (2012), 1-200, Cambridge University Press, Cambridge Zbl1253.20032MR2894945
- Roman Muchnik, Igor Pak, On growth of Grigorchuk groups, Internat. J. Algebra Comput. (2001), 1-17 Zbl1024.20031MR1818659
- Said Sidki, On a -generated infinite -group: the presentation problem, J. Algebra 110 (1987), 13-23 Zbl0623.20024MR904179
- V. I. Trofimov, The growth functions of finitely generated semigroups, Semigroup Forum 21 (1980), 351-360 Zbl0453.20047MR597500
- Robert B. Warfield, The Gel’fand-Kirillov dimension of a tensor product, Math. Z. 185 (1984), 441-447 Zbl0506.16017MR733766
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.