Groups of given intermediate word growth

Laurent Bartholdi[1]; Anna Erschler[2]

  • [1] Georg-August Universität L.B.: Mathematisches Institut Bunsenstraße 3–5 D-37073 Göttingen (Germany)
  • [2] A.E.: C.N.R.S. Université Paris Sud Département de Mathématiques Bâtiment 425 91405 Orsay (France)

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 5, page 2003-2036
  • ISSN: 0373-0956

Abstract

top
We show that there exists a finitely generated group of growth f for all functions f : + + satisfying f ( 2 R ) f ( R ) 2 f ( η + R ) for all R large enough and η + 2 . 4675 the positive root of X 3 - X 2 - 2 X - 4 . Set α - = log 2 / log η + 0 . 7674 ; then all functions that grow uniformly faster than exp ( R α - ) are realizable as the growth of a group.We also give a family of sum-contracting branched groups of growth exp ( R α ) for a dense set of α [ α - , 1 ] .

How to cite

top

Bartholdi, Laurent, and Erschler, Anna. "Groups of given intermediate word growth." Annales de l’institut Fourier 64.5 (2014): 2003-2036. <http://eudml.org/doc/275656>.

@article{Bartholdi2014,
abstract = {We show that there exists a finitely generated group of growth $\{\sim \} f$ for all functions $f\colon \mathbb\{R\}_+\rightarrow \mathbb\{R\}_+$ satisfying $f(2R)\le f(R)^2\le f(\eta _+R)$ for all $R$ large enough and $\eta _+\approx 2.4675$ the positive root of $X^3-X^2-2X-4$. Set $\alpha _-=\log 2/\log \eta _+\approx 0.7674$; then all functions that grow uniformly faster than $\exp (R^\{\alpha _-\})$ are realizable as the growth of a group.We also give a family of sum-contracting branched groups of growth $\sim \exp (R^\alpha )$ for a dense set of $\alpha \in [\alpha _-,1]$.},
affiliation = {Georg-August Universität L.B.: Mathematisches Institut Bunsenstraße 3–5 D-37073 Göttingen (Germany); A.E.: C.N.R.S. Université Paris Sud Département de Mathématiques Bâtiment 425 91405 Orsay (France)},
author = {Bartholdi, Laurent, Erschler, Anna},
journal = {Annales de l’institut Fourier},
keywords = {Growth of groups; self-similar groups; groups acting on trees; wreath products; growth of groups; finitely generated groups; groups of intermediate growth; growth functions; Grigorchuk groups},
language = {eng},
number = {5},
pages = {2003-2036},
publisher = {Association des Annales de l’institut Fourier},
title = {Groups of given intermediate word growth},
url = {http://eudml.org/doc/275656},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Bartholdi, Laurent
AU - Erschler, Anna
TI - Groups of given intermediate word growth
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 5
SP - 2003
EP - 2036
AB - We show that there exists a finitely generated group of growth ${\sim } f$ for all functions $f\colon \mathbb{R}_+\rightarrow \mathbb{R}_+$ satisfying $f(2R)\le f(R)^2\le f(\eta _+R)$ for all $R$ large enough and $\eta _+\approx 2.4675$ the positive root of $X^3-X^2-2X-4$. Set $\alpha _-=\log 2/\log \eta _+\approx 0.7674$; then all functions that grow uniformly faster than $\exp (R^{\alpha _-})$ are realizable as the growth of a group.We also give a family of sum-contracting branched groups of growth $\sim \exp (R^\alpha )$ for a dense set of $\alpha \in [\alpha _-,1]$.
LA - eng
KW - Growth of groups; self-similar groups; groups acting on trees; wreath products; growth of groups; finitely generated groups; groups of intermediate growth; growth functions; Grigorchuk groups
UR - http://eudml.org/doc/275656
ER -

References

top
  1. Laurent Bartholdi, The growth of Grigorchuk’s torsion group, Internat. Math. Res. Notices (1998), 1049-1054 Zbl0942.20027MR1656258
  2. Laurent Bartholdi, Lower bounds on the growth of a group acting on the binary rooted tree, Internat. J. Algebra Comput. 11 (2001), 73-88 Zbl1028.20025MR1818662
  3. Laurent Bartholdi, Endomorphic presentations of branch groups, J. Algebra 268 (2003), 419-443 Zbl1044.20015MR2009317
  4. Laurent Bartholdi, Anna Erschler, Growth of permutational extensions, Invent. Math. 189 (2012), 431-455 Zbl1286.20025MR2947548
  5. Laurent Bartholdi, Anna G. Erschler, Poisson-Furstenberg boundary and growth of groups Zbl1317.20043
  6. Laurent Bartholdi, Rostislav I. Grigorchuk, Zoran Šuniḱ, Branch groups, Handbook of algebra, Vol. 3 (2003), 989-1112, North-Holland, Amsterdam Zbl1140.20306MR2035113
  7. Laurent Bartholdi, Agata Smoktunowicz, Images of Golod-Shafarevich algebras with small growth Zbl1312.16017MR3230369
  8. Laurent Bartholdi, Zoran Šuniḱ, On the word and period growth of some groups of tree automorphisms, Comm. Algebra 29 (2001), 4923-4964 Zbl1001.20027MR1856923
  9. Garrett Birkhoff, Extensions of Jentzsch’s theorem, Trans. Amer. Math. Soc. 85 (1957), 219-227 Zbl0079.13502MR87058
  10. Jérémie Brieussel, Growth behaviours in the range e ( r α )  Zbl1337.20041
  11. Jérémie Brieussel, Growth of certain groups of automorphisms of rooted trees, (2008) Zbl1227.43001
  12. L. Carlitz, A. Wilansky, John Milnor, R. A. Struble, Neal Felsinger, J. M. S. Simoes, E. A. Power, R. E. Shafer, R. E. Maas, Problems and Solutions: Advanced Problems: 5600-5609, Amer. Math. Monthly 75 (1968), 685-687 MR1534960
  13. Yves de Cornulier, Finitely presented wreath products and double coset decompositions, Geom. Dedicata 122 (2006), 89-108 Zbl1137.20019MR2295543
  14. Anna Erschler, Boundary behavior for groups of subexponential growth, Ann. of Math. (2) 160 (2004), 1183-1210 Zbl1089.20025MR2144977
  15. Anna Erschler, Critical constants for recurrence of random walks on G -spaces, Ann. Inst. Fourier (Grenoble) 55 (2005), 493-509 Zbl1133.20031MR2147898
  16. A. G. Èrshler, On the degrees of growth of finitely generated groups, Funktsional. Anal. i Prilozhen. 39 (2005), 86-89 Zbl1122.20016MR2197519
  17. R. I. Grigorchuk, On the Milnor problem of group growth, Dokl. Akad. Nauk SSSR 271 (1983), 30-33 Zbl0547.20025MR712546
  18. R. I. Grigorchuk, Degrees of growth of finitely generated groups and the theory of invariant means, Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), 939-985 Zbl0583.20023MR764305
  19. R. I. Grigorchuk, Degrees of growth of p -groups and torsion-free groups, Mat. Sb. (N.S.) 126(168) (1985), 194-214, 286 Zbl0568.20033MR784354
  20. R. I. Grigorchuk, A. Machì, An example of an indexed language of intermediate growth, Theoret. Comput. Sci. 215 (1999), 325-327 Zbl0913.68121MR1678812
  21. Mikhael Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. (1981), 53-73 Zbl0474.20018MR623534
  22. Pierre de la Harpe, Topics in geometric group theory, (2000), University of Chicago Press, Chicago, IL Zbl0965.20025MR1786869
  23. Martin Kassabov, Igor Pak, Groups of oscillating intermediate growth, Ann. of Math. (2) 177 (2013), 1113-1145 Zbl1283.20027MR3034295
  24. Günter R. Krause, Thomas H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, 22 (2000), American Mathematical Society, Providence, RI Zbl0957.16001MR1721834
  25. Yu. G. Leonov, On a lower bound for the growth function of the Grigorchuk group, Mat. Zametki 67 (2000), 475-477 Zbl0984.20020MR1779480
  26. Avinoam Mann, How groups grow, 395 (2012), 1-200, Cambridge University Press, Cambridge Zbl1253.20032MR2894945
  27. Roman Muchnik, Igor Pak, On growth of Grigorchuk groups, Internat. J. Algebra Comput. (2001), 1-17 Zbl1024.20031MR1818659
  28. Said Sidki, On a 2 -generated infinite 3 -group: the presentation problem, J. Algebra 110 (1987), 13-23 Zbl0623.20024MR904179
  29. V. I. Trofimov, The growth functions of finitely generated semigroups, Semigroup Forum 21 (1980), 351-360 Zbl0453.20047MR597500
  30. Robert B. Warfield, The Gel’fand-Kirillov dimension of a tensor product, Math. Z. 185 (1984), 441-447 Zbl0506.16017MR733766

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.