On G -sets and isospectrality

Ori Parzanchevski[1]

  • [1] Hebrew University of Jerusalem

Annales de l’institut Fourier (2013)

  • Volume: 63, Issue: 6, page 2307-2329
  • ISSN: 0373-0956

Abstract

top
We study finite G -sets and their tensor product with Riemannian manifolds, and obtain results on isospectral quotients and covers. In particular, we show the following: If M is a compact connected Riemannian manifold (or orbifold) whose fundamental group has a finite non-cyclic quotient, then M has isospectral non-isometric covers.

How to cite

top

Parzanchevski, Ori. "On $G$-sets and isospectrality." Annales de l’institut Fourier 63.6 (2013): 2307-2329. <http://eudml.org/doc/275662>.

@article{Parzanchevski2013,
abstract = {We study finite $G$-sets and their tensor product with Riemannian manifolds, and obtain results on isospectral quotients and covers. In particular, we show the following: If $M$ is a compact connected Riemannian manifold (or orbifold) whose fundamental group has a finite non-cyclic quotient, then $M$ has isospectral non-isometric covers.},
affiliation = {Hebrew University of Jerusalem},
author = {Parzanchevski, Ori},
journal = {Annales de l’institut Fourier},
keywords = {isospectrality; laplacian; G-sets; Sunada; Laplacian; -sets},
language = {eng},
number = {6},
pages = {2307-2329},
publisher = {Association des Annales de l’institut Fourier},
title = {On $G$-sets and isospectrality},
url = {http://eudml.org/doc/275662},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Parzanchevski, Ori
TI - On $G$-sets and isospectrality
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 6
SP - 2307
EP - 2329
AB - We study finite $G$-sets and their tensor product with Riemannian manifolds, and obtain results on isospectral quotients and covers. In particular, we show the following: If $M$ is a compact connected Riemannian manifold (or orbifold) whose fundamental group has a finite non-cyclic quotient, then $M$ has isospectral non-isometric covers.
LA - eng
KW - isospectrality; laplacian; G-sets; Sunada; Laplacian; -sets
UR - http://eudml.org/doc/275662
ER -

References

top
  1. R. Band, O. Parzanchevski, G. Ben-Shach, The isospectral fruits of representation theory: quantum graphs and drums, Journal of Physics A: Mathematical and Theoretical 42 (2009) Zbl1176.58019MR2539297
  2. P. Bérard, Transplantation et isospectralité I, Mathematische Annalen 292 (1992), 547-559 Zbl0735.58008MR1152950
  3. R. Brooks, Some relations between graph theory and Riemann surfaces, Isr. Math. Conf. Proc. 11 (1996) Zbl0890.30027MR1476704
  4. P. Buser, Isospectral Riemann surfaces, Ann. Inst. Fourier 36 (1986), 167-192 Zbl0579.53036MR850750
  5. P. Buser, J. Conway, P. Doyle, K. D. Semmler, Some planar isospectral domains, International Mathematics Research Notices 1994 (1994), 391-400 Zbl0837.58033MR1301439
  6. SJ Chapman, Drums that sound the same, American Mathematical Monthly 102 (1995), 124-138 Zbl0849.35084MR1315592
  7. D.M. DeTurck, C.S. Gordon, K.B. Lee, Isospectral deformations II: Trace formulas, metrics, and potentials, Communications on Pure and Applied Mathematics 42 (1989), 1067-1095 Zbl0709.53030MR1029118
  8. M. DiPasquale, On the Order of a Group Containing Nontrivial Gassmann Equivalent Subgroups, Rose-Hulman Undergraduate Mathematics Journal 10 (2009) 
  9. P.G. Doyle, J.P. Rossetti, Laplace-isospectral hyperbolic 2-orbifolds are representation-equivalent, Arxiv preprint arXiv:1103.4372 (2011) 
  10. GAP – Groups, Algorithms, and Programming, Version 4.4.12, (2008) 
  11. F. Gassmann, Bemerkungen zur vorstehenden Arbeit von Hurwitz, Math. Z 25 (1926), 124-143 
  12. C. Gordon, D.L. Webb, S. Wolpert, One cannot hear the shape of a drum, American Mathematical Society 27 (1992) Zbl0756.58049MR1136137
  13. M. Hall, The theory of groups, (1976), Chelsea Pub Co Zbl0354.20001MR414669
  14. L. Hillairet, Spectral decomposition of square-tiled surfaces, Mathematische Zeitschrift 260 (2008), 393-408 Zbl1156.58012MR2429619
  15. M. Kac, Can one hear the shape of a drum?, The american mathematical monthly 73 (1966), 1-23 Zbl0139.05603MR201237
  16. M. Larsen, Determining a semisimple group from its representation degrees, International Mathematics Research Notices 2004 (2004) Zbl1073.22009MR2063567
  17. M. Lemańczyk, J.P. Thouvenot, B. Weiss, Relative discrete spectrum and joinings, Monatshefte für Mathematik 137 (2002), 57-75 Zbl1090.37002MR1930996
  18. M. Merling, R. Perlis, Gassmann Equivalent Dessins, Communications in Algebra® 38 (2010), 2129-2137 Zbl1246.11126MR2675525
  19. J. Milnor, Eigenvalues of the Laplace operator on certain manifolds, Proceedings of the National Academy of Sciences of the United States of America 51 (1964) Zbl0124.31202MR162204
  20. O. Parzanchevski, R. Band, Linear representations and isospectrality with boundary conditions, Journal of Geometric Analysis 20 (2010), 439-471 Zbl1187.58032MR2579517
  21. J.P. Serre, Linear representations of finite groups, 42 (1977), Springer Verlag Zbl0355.20006MR450380
  22. T. Shapira, U. Smilansky, Quantum graphs which sound the same, Non-linear dynamics and fundamental interactions (2006), 17-29 Zbl1132.37312
  23. H.M. Stark, A.A. Terras, Zeta functions of finite graphs and coverings, part II, Advances in Mathematics 154 (2000), 132-195 Zbl0972.11086MR1780097
  24. T. Sunada, Riemannian coverings and isospectral manifolds, The Annals of Mathematics 121 (1985), 169-186 Zbl0585.58047MR782558

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.