Some surfaces with maximal Picard number
- [1] Laboratoire J.-A. Dieudonné, UMR 7351 du CNRS, Université de Nice Parc Valrose, F-06108 Nice cedex 2, France
Journal de l’École polytechnique — Mathématiques (2014)
- Volume: 1, page 101-116
- ISSN: 2270-518X
Access Full Article
topAbstract
topHow to cite
topBeauville, Arnaud. "Some surfaces with maximal Picard number." Journal de l’École polytechnique — Mathématiques 1 (2014): 101-116. <http://eudml.org/doc/275663>.
@article{Beauville2014,
abstract = {For a smooth complex projective variety, the rank $\rho $ of the Néron-Severi group is bounded by the Hodge number $h^\{1,1\}$. Varieties with $\rho =h^\{1,1\}$ have interesting properties, but are rather sparse, particularly in dimension $2$. We discuss in this note a number of examples, in particular those constructed from curves with special Jacobians.},
affiliation = {Laboratoire J.-A. Dieudonné, UMR 7351 du CNRS, Université de Nice Parc Valrose, F-06108 Nice cedex 2, France},
author = {Beauville, Arnaud},
journal = {Journal de l’École polytechnique — Mathématiques},
keywords = {Algebraic surfaces; Picard group; Picard number; curve correspondences; Jacobians; algebraic surfaces},
language = {eng},
pages = {101-116},
publisher = {École polytechnique},
title = {Some surfaces with maximal Picard number},
url = {http://eudml.org/doc/275663},
volume = {1},
year = {2014},
}
TY - JOUR
AU - Beauville, Arnaud
TI - Some surfaces with maximal Picard number
JO - Journal de l’École polytechnique — Mathématiques
PY - 2014
PB - École polytechnique
VL - 1
SP - 101
EP - 116
AB - For a smooth complex projective variety, the rank $\rho $ of the Néron-Severi group is bounded by the Hodge number $h^{1,1}$. Varieties with $\rho =h^{1,1}$ have interesting properties, but are rather sparse, particularly in dimension $2$. We discuss in this note a number of examples, in particular those constructed from curves with special Jacobians.
LA - eng
KW - Algebraic surfaces; Picard group; Picard number; curve correspondences; Jacobians; algebraic surfaces
UR - http://eudml.org/doc/275663
ER -
References
top- A. Adler, Some integral representations of and their applications, J. Algebra 72 (1981), 115-145 Zbl0479.20017MR634619
- N. Aoki, On Some Arithmetic Problems Related to the Hodge Cycles on the Fermat Varieties, Math. Ann. 266 (1983), 23-54 Zbl0506.14030MR722926
- A. Beauville, R. Donagi, La variété des droites d’une hypersurface cubique de dimension , C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), 703-706 Zbl0602.14041MR818549
- J. Bertin, G. Elencwajg, Configurations de coniques et surfaces avec un nombre de Picard maximum, Math. Z. 194 (1987), 245-258 Zbl0612.14031MR876234
- A. Beauville, A tale of two surfaces, (2013)
- F. Catanese, Surfaces with and their period mapping, Algebraic geometry (Copenhagen, 1978) 732 (1979), 1-29, Springer, Berlin Zbl0423.14019MR555688
- H. C. Clemens, P. A. Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of Math. (2) 95 (1972), 281-356 Zbl0214.48302MR302652
- I. Dolgachev, V. Kanev, Polar covariants of plane cubics and quartics, Advances in Math. 98 (1993), 216-301 Zbl0791.14013MR1213725
- E. Freitag, R. Salvati Manni, Parametrization of the box variety by theta functions, (2013) Zbl1285.11076MR3078079
- P. A. Griffiths, On the periods of certain rational integrals. I, II, Ann. of Math. (2) 90 (1969), 460-495 & 496-541 Zbl0215.08103MR260733
- T. Hayashida, M. Nishi, Existence of curves of genus two on a product of two elliptic curves, J. Math. Soc. Japan 17 (1965), 1-16 Zbl0132.41701MR201434
- D. W. Hoffmann, On positive definite Hermitian forms, Manuscripta Math. 71 (1991), 399-429 Zbl0729.11020MR1104993
- T. Katsura, On the structure of singular abelian varieties, Proc. Japan Acad. 51 (1975), 224-228 Zbl0321.14021MR376695
- H. Lange, Produkte elliptischer Kurven, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II (1975), 95-108 Zbl0317.14022MR506297
- H. Lange, C. Birkenhake, Complex abelian varieties, 302 (1992), Springer-Verlag, Berlin Zbl1056.14063MR1217487
- R. A. Livne, On certain covers of the universal elliptic curve, (1981) MR2936887
- U. Persson, Horikawa surfaces with maximal Picard numbers, Math. Ann. 259 (1982), 287-312 Zbl0466.14010MR661198
- X. Roulleau, The Fano surface of the Klein cubic threefold, J. Math. Kyoto Univ. 49 (2009), 113-129 Zbl1207.14045MR2531132
- X. Roulleau, Fano surfaces with 12 or 30 elliptic curves, Michigan Math. J. 60 (2011), 313-329 Zbl1225.14029MR2825265
- M. Schütt, Quintic surfaces with maximum and other Picard numbers, J. Math. Soc. Japan 63 (2011), 1187-1201 Zbl1232.14022MR2855811
- T. Shioda, Elliptic modular surfaces. I, Proc. Japan Acad. 45 (1969), 786-790 Zbl0198.26301
- T. Shioda, The Hodge conjecture for Fermat varieties, Math. Ann. 245 (1979), 175-184 Zbl0403.14007MR552586
- T. Shioda, On the Picard number of a Fermat surface, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), 725-734 (1982) Zbl0567.14021MR656049
- J. H. Silverman, Advanced topics in the arithmetic of elliptic curves, 151 (1994), Springer-Verlag, New York Zbl0911.14015MR1312368
- M. Stoll, D. Testa, The surface parametrizing cuboids, (2010)
- A. N. Todorov, Surfaces of general type with and . I, Ann. Sci. École Norm. Sup. (4) 13 (1980), 1-21 Zbl0478.14030MR584080
- A. N. Todorov, A construction of surfaces with , and . Counterexamples of the global Torelli theorem, Invent. Math. 63 (1981), 287-304 Zbl0457.14016MR610540
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.