Surfaces of general type with p g = 1 and ( K , K ) = 1 . I

Andrei N. Todorov

Annales scientifiques de l'École Normale Supérieure (1980)

  • Volume: 13, Issue: 1, page 1-21
  • ISSN: 0012-9593

How to cite

top

Todorov, Andrei N.. "Surfaces of general type with $p_g=1$ and $(K,\,K)=1$. I." Annales scientifiques de l'École Normale Supérieure 13.1 (1980): 1-21. <http://eudml.org/doc/82044>.

@article{Todorov1980,
author = {Todorov, Andrei N.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {surface of general type; failure of local Torelli theorem; complete intersections; Galois coverings},
language = {eng},
number = {1},
pages = {1-21},
publisher = {Elsevier},
title = {Surfaces of general type with $p_g=1$ and $(K,\,K)=1$. I},
url = {http://eudml.org/doc/82044},
volume = {13},
year = {1980},
}

TY - JOUR
AU - Todorov, Andrei N.
TI - Surfaces of general type with $p_g=1$ and $(K,\,K)=1$. I
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1980
PB - Elsevier
VL - 13
IS - 1
SP - 1
EP - 21
LA - eng
KW - surface of general type; failure of local Torelli theorem; complete intersections; Galois coverings
UR - http://eudml.org/doc/82044
ER -

References

top
  1. [Bom] E. BOMBIERI, Canonical Models of Surfaces of General Type (Publ. Math. I.H.E.S., Vol. 42, pp. 447-495). Zbl0259.14005
  2. [B] R. BOTT, Homogeneous Vector Bundles (Ann. of Math., Vol. 66, No. 2, 1957, pp. 203-248). Zbl0094.35701MR19,681d
  3. [D] I. DOLGACEV, Weighted Projective Varieties, preprint. 
  4. [G] P. GRIFFITHS, Periods of Integrals on Algebraic Manifolds II (Amer. J. Math., Vol. 90, No. 3, 1968, pp. 805-865. Zbl0183.25501MR38 #2146
  5. [H] HARTSHORNE, Algebraic Geometry, Springer-Verlag, Graduate Texts in Mathematics, Vol. 52. Zbl0367.14001MR57 #3116
  6. [Ku] V. KUNEV, Thesis for Master's Degree, Sofia University, 1976. 
  7. [M] D. MUMFORD, Pathologies III (Amer. J. Math., Vol. 89, 1967, pp. 94-104). Zbl0146.42403MR36 #182
  8. [W] J. WAVRIK, Deformation of Banach Coverings of Manifolds (Amer. J. Math., Vol. 90, No. 3, 1968, pp. 926-960). Zbl0176.03902MR38 #1706
  9. [Š] I. R. ŠAFAREVICH, Algebraic Surfaces (Proc. of Steklov's Math. Institute, Vol. 75). 

Citations in EuDML Documents

top
  1. Sampei Usui, Torelli theorem for surfaces with p g = c 1 2 = 1 and K ample and with certain type of automorphism
  2. Ron Donagi, Generic torelli for projective hypersurfaces
  3. Loring Tu, Macaulay's theorem and local Torelli for weighted hypersurfaces
  4. Sampei Usui, Variation of mixed Hodge structures arising from family of logarithmic deformations
  5. Arnaud Beauville, Some surfaces with maximal Picard number
  6. Arnaud Beauville, Le problème de Torelli
  7. James Carlson, Mark Green, Phillip Griffiths, Joe Harris, Infinitesimal variations of hodge structure (I)

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.