On cusps and flat tops
Neil Dobbs[1]
- [1] Department of Mathematics and Statistics PL 68 FIN-00014 University of Helsinki Finland
Annales de l’institut Fourier (2014)
- Volume: 64, Issue: 2, page 571-605
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDobbs, Neil. "On cusps and flat tops." Annales de l’institut Fourier 64.2 (2014): 571-605. <http://eudml.org/doc/275668>.
@article{Dobbs2014,
abstract = {Non-invertible Pesin theory is developed for a class of piecewise smooth interval maps which may have unbounded derivative, but satisfy a property analogous to $C^\{1+\epsilon \}$. The critical points are not required to verify a non-flatness condition, so the results are applicable to $C^\{1+\epsilon \}$ maps with flat critical points. If the critical points are too flat, then no absolutely continuous invariant probability measure can exist. This generalises a result of Benedicks and Misiurewicz.},
affiliation = {Department of Mathematics and Statistics PL 68 FIN-00014 University of Helsinki Finland},
author = {Dobbs, Neil},
journal = {Annales de l’institut Fourier},
keywords = {Lyapunov exponent; Pesin theory; absolutely continuous invariant measures; interval dynamics; flat critical points},
language = {eng},
number = {2},
pages = {571-605},
publisher = {Association des Annales de l’institut Fourier},
title = {On cusps and flat tops},
url = {http://eudml.org/doc/275668},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Dobbs, Neil
TI - On cusps and flat tops
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 2
SP - 571
EP - 605
AB - Non-invertible Pesin theory is developed for a class of piecewise smooth interval maps which may have unbounded derivative, but satisfy a property analogous to $C^{1+\epsilon }$. The critical points are not required to verify a non-flatness condition, so the results are applicable to $C^{1+\epsilon }$ maps with flat critical points. If the critical points are too flat, then no absolutely continuous invariant probability measure can exist. This generalises a result of Benedicks and Misiurewicz.
LA - eng
KW - Lyapunov exponent; Pesin theory; absolutely continuous invariant measures; interval dynamics; flat critical points
UR - http://eudml.org/doc/275668
ER -
References
top- Vítor Araújo, Stefano Luzzatto, Marcelo Viana, Invariant measures for interval maps with critical points and singularities, Adv. Math. 221 (2009), 1428-1444 Zbl1184.37032MR2522425
- Magnus Aspenberg, Rational Misiurewicz maps are rare, Comm. Math. Phys. 291 (2009), 645-658 Zbl1185.37103MR2534788
- Michael Benedicks, Michał Misiurewicz, Absolutely continuous invariant measures for maps with flat tops, Inst. Hautes Études Sci. Publ. Math. (1989), 203-213 Zbl0703.58030MR1019965
- A. M. Blokh, M. Yu. Lyubich, Measurable dynamics of -unimodal maps of the interval, Ann. Sci. École Norm. Sup. (4) 24 (1991), 545-573 Zbl0790.58024MR1132757
- H. Bruin, Induced maps, Markov extensions and invariant measures in one-dimensional dynamics, Comm. Math. Phys. 168 (1995), 571-580 Zbl0827.58015MR1328254
- H. Bruin, J. Rivera-Letelier, W. Shen, S. van Strien, Large derivatives, backward contraction and invariant densities for interval maps, Invent. Math. 172 (2008), 509-533 Zbl1138.37019MR2393079
- Henk Bruin, Weixiao Shen, Sebastian van Strien, Invariant measures exist without a growth condition, Comm. Math. Phys. 241 (2003), 287-306 Zbl1098.37034MR2013801
- Henk Bruin, Mike Todd, Equilibrium states for interval maps: the potential , Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), 559-600 Zbl1192.37051MR2568876
- K. Díaz-Ordaz, M. P. Holland, S. Luzzatto, Statistical properties of one-dimensional maps with critical points and singularities, Stoch. Dyn. 6 (2006), 423-458 Zbl1130.37362MR2285510
- Neil Dobbs, Critical points, cusps and induced expansion in dimension one, (2006)
- Neil Dobbs, Visible measures of maximal entropy in dimension one, Bull. Lond. Math. Soc. 39 (2007), 366-376 Zbl1132.37017MR2331563
- Neil Dobbs, Measures with positive Lyapunov exponent and conformal measures in rational dynamics, Trans. Amer. Math. Soc. 364 (2012), 2803-2824 Zbl1267.37042MR2888229
- Neil Dobbs, Bartłomiej Skorulski, Non-existence of absolutely continuous invariant probabilities for exponential maps, Fund. Math. 198 (2008), 283-287 Zbl1167.37024MR2391016
- Jacek Graczyk, Duncan Sands, Grzegorz Świątek, Metric attractors for smooth unimodal maps, Ann. of Math. (2) 159 (2004), 725-740 Zbl1055.37041MR2081438
- Franz Hofbauer, On intrinsic ergodicity of piecewise monotonic transformations with positive entropy, Israel J. Math. 34 (1979), 213-237 (1980) Zbl0422.28015MR570882
- Franz Hofbauer, On intrinsic ergodicity of piecewise monotonic transformations with positive entropy. II, Israel J. Math. 38 (1981), 107-115 Zbl0456.28006MR599481
- Franz Hofbauer, Peter Raith, The Hausdorff dimension of an ergodic invariant measure for a piecewise monotonic map of the interval, Canad. Math. Bull. 35 (1992), 84-98 Zbl0701.28005MR1157469
- Franz Hofbauer, Peter Raith, The Hausdorff dimension of an ergodic invariant measure for a piecewise monotonic map of the interval, Canad. Math. Bull. 35 (1992), 84-98 Zbl0701.28005MR1157469
- Gerhard Keller, Lifting measures to Markov extensions, Monatsh. Math. 108 (1989), 183-200 Zbl0712.28008MR1026617
- Gerhard Keller, Exponents, attractors and Hopf decompositions for interval maps, Ergodic Theory Dynam. Systems 10 (1990), 717-744 Zbl0715.58020MR1091423
- François Ledrappier, Some properties of absolutely continuous invariant measures on an interval, Ergodic Theory Dynamical Systems 1 (1981), 77-93 Zbl0487.28015MR627788
- François Ledrappier, Quelques propriétés ergodiques des applications rationnelles, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), 37-40 Zbl0567.58016MR756305
- Stefano Luzzatto, Warwick Tucker, Non-uniformly expanding dynamics in maps with singularities and criticalities, Inst. Hautes Études Sci. Publ. Math. (1999), 179-226 (2000) Zbl0978.37029MR1793416
- Marco Martens, Distortion results and invariant Cantor sets of unimodal maps, Ergodic Theory Dynam. Systems 14 (1994), 331-349 Zbl0809.58026MR1279474
- Welington de Melo, Sebastian van Strien, One-dimensional dynamics, 25 (1993), Springer-Verlag, Berlin Zbl0791.58003MR1239171
- Sheldon E. Newhouse, Entropy and volume, Ergodic Theory Dynam. Systems 8 * (1988), 283-299 Zbl0638.58016MR967642
- William Parry, Topics in ergodic theory, 75 (1981), Cambridge University Press, Cambridge Zbl0449.28016MR614142
- V. A. Rohlin, Exact endomorphisms of a Lebesgue space, Amer. Math. Soc. Transl. (2) 39 (1964), 1-36 Zbl0154.15703MR228654
- David Ruelle, An inequality for the entropy of differentiable maps, Bol. Soc. Brasil. Mat. 9 (1978), 83-87 Zbl0432.58013MR516310
- Marek Rychlik, Bounded variation and invariant measures, Studia Math. 76 (1983), 69-80 Zbl0575.28011MR728198
- Duncan Sands, Misiurewicz maps are rare, Comm. Math. Phys. 197 (1998), 109-129 Zbl0921.58015MR1646471
- Luzzatto Stefano, Viana Marcelo, Positive Lyapunov exponents for Lorenz-like families with criticalities, (2000), xiii, 201-237 Zbl0944.37025MR1755442
- Hans Thunberg, Positive exponent in families with flat critical point, Ergodic Theory Dynam. Systems 19 (1999), 767-807 Zbl0966.37011MR1695920
- Roland Zweimüller, -unimodal Misiurewicz maps with flat critical points, Fund. Math. 181 (2004), 1-25 Zbl1065.28009MR2071693
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.