Hochschild homology and cohomology of Generalized Weyl algebras: the quantum case

Andrea Solotar[1]; Mariano Suárez-Alvarez[1]; Quimey Vivas[1]

  • [1] Departamento de Matemática-IMAS Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 1 1428, Buenos Aires, Argentina.

Annales de l’institut Fourier (2013)

  • Volume: 63, Issue: 3, page 923-956
  • ISSN: 0373-0956

Abstract

top
We determine the Hochschild homology and cohomology of the generalized Weyl algebras of rank one which are of ‘quantum’ type in all but a few exceptional cases.

How to cite

top

Solotar, Andrea, Suárez-Alvarez, Mariano, and Vivas, Quimey. "Hochschild homology and cohomology of Generalized Weyl algebras: the quantum case." Annales de l’institut Fourier 63.3 (2013): 923-956. <http://eudml.org/doc/275669>.

@article{Solotar2013,
abstract = {We determine the Hochschild homology and cohomology of the generalized Weyl algebras of rank one which are of ‘quantum’ type in all but a few exceptional cases.},
affiliation = {Departamento de Matemática-IMAS Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 1 1428, Buenos Aires, Argentina.; Departamento de Matemática-IMAS Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 1 1428, Buenos Aires, Argentina.; Departamento de Matemática-IMAS Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 1 1428, Buenos Aires, Argentina.},
author = {Solotar, Andrea, Suárez-Alvarez, Mariano, Vivas, Quimey},
journal = {Annales de l’institut Fourier},
keywords = {generalized Weyl algebra; Hochschild cohomology; global dimension; generalized Weyl algebras; Hochschild homology},
language = {eng},
number = {3},
pages = {923-956},
publisher = {Association des Annales de l’institut Fourier},
title = {Hochschild homology and cohomology of Generalized Weyl algebras: the quantum case},
url = {http://eudml.org/doc/275669},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Solotar, Andrea
AU - Suárez-Alvarez, Mariano
AU - Vivas, Quimey
TI - Hochschild homology and cohomology of Generalized Weyl algebras: the quantum case
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 3
SP - 923
EP - 956
AB - We determine the Hochschild homology and cohomology of the generalized Weyl algebras of rank one which are of ‘quantum’ type in all but a few exceptional cases.
LA - eng
KW - generalized Weyl algebra; Hochschild cohomology; global dimension; generalized Weyl algebras; Hochschild homology
UR - http://eudml.org/doc/275669
ER -

References

top
  1. Luchezar L. Avramov, Srikanth Iyengar, Gaps in Hochschild cohomology imply smoothness for commutative algebras, Math. Res. Lett. 12 (2005), 789-804 Zbl1101.13018MR2189239
  2. Luchezar L. Avramov, Micheline Vigué-Poirrier, Hochschild homology criteria for smoothness, Internat. Math. Res. Notices (1992), 17-25 Zbl0755.13006MR1149001
  3. BACH, A Hochschild homology criterium for the smoothness of an algebra, Comment. Math. Helv. 69 (1994), 163-168 Zbl0824.13009MR1282365
  4. V. V. Bavula, Generalized Weyl algebras and their representations, Algebra i Analiz 4 (1992), 75-97 Zbl0807.16027MR1171955
  5. Vladimir Bavula, Global dimension of generalized Weyl algebras, Representation theory of algebras (Cocoyoc, 1994) 18 (1996), 81-107, Amer. Math. Soc., Providence, RI Zbl0857.16025MR1388045
  6. Petter Andreas Bergh, Karin Erdmann, Homology and cohomology of quantum complete intersections, Algebra Number Theory 2 (2008), 501-522 Zbl1205.16011MR2429451
  7. Petter Andreas Bergh, Dag Madsen, Hochschild homology and global dimension, Bull. Lond. Math. Soc. 41 (2009), 473-482 Zbl1207.16006MR2506831
  8. Ragnar-Olaf Buchweitz, Edward L. Green, Dag Madsen, Øyvind Solberg, Finite Hochschild cohomology without finite global dimension, Math. Res. Lett. 12 (2005), 805-816 Zbl1138.16003MR2189240
  9. M. A. Farinati, A. Solotar, M. Suárez-Álvarez, Hochschild homology and cohomology of generalized Weyl algebras, Ann. Inst. Fourier (Grenoble) 53 (2003), 465-488 Zbl1100.16008MR1990004
  10. Yang Han, Hochschild (co)homology dimension, J. London Math. Soc. (2) 73 (2006), 657-668 Zbl1139.16010MR2241972
  11. Dieter Happel, Hochschild cohomology of finite-dimensional algebras, Séminaire d’Algèbre Paul Dubreil et Marie-Paul Malliavin, 39ème Année (Paris, 1987/1988) 1404 (1989), 108-126, Springer, Berlin Zbl0688.16033MR1035222
  12. G. Hochschild, Bertram Kostant, Alex Rosenberg, Differential forms on regular affine algebras, Trans. Amer. Math. Soc. 102 (1962), 383-408 Zbl0102.27701MR142598
  13. Lionel Richard, Andrea Solotar, Isomorphisms between quantum generalized Weyl algebras, J. Algebra Appl. 5 (2006), 271-285 Zbl1102.16025MR2235811
  14. Antonio G. Rodicio, Smooth algebras and vanishing of Hochschild homology, Comment. Math. Helv. 65 (1990), 474-477 Zbl0726.13008MR1069822
  15. Antonio G. Rodicio, Commutative augmented algebras with two vanishing homology modules, Adv. Math. 111 (1995), 162-165 Zbl0830.13011MR1317386
  16. S. P. Smith, A class of algebras similar to the enveloping algebra of sl ( 2 ) , Trans. Amer. Math. Soc. 322 (1990), 285-314 Zbl0732.16019MR972706
  17. Andrea Solotar, Micheline Vigué-Poirrier, Two classes of algebras with infinite Hochschild homology, Proc. Amer. Math. Soc. 138 (2010), 861-869 Zbl1227.16011MR2566552

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.