Hochschild homology and cohomology of generalized Weyl algebras

Marco A. Farinati[1]; Andrea L. Solotar[1]; Mariano Suárez-Álvarez[1]

  • [1] Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentine)

Annales de l’institut Fourier (2003)

  • Volume: 53, Issue: 2, page 465-488
  • ISSN: 0373-0956

Abstract

top
We compute Hochschild homology and cohomology of a class of generalized Weyl algebras, introduced by V. V. Bavula in St. Petersbourg Math. Journal, 4 (1) (1999), 71-90. Examples of such algebras are the n-th Weyl algebras, 𝒰 ( 𝔰 𝔩 2 ) , primitive quotients of 𝒰 ( 𝔰 𝔩 2 ) , and subalgebras of invariants of these algebras under finite cyclic groups of automorphisms. We answer a question of Bavula–Jordan (Trans. A.M.S., 353 (2) (2001), 769-794) concerning the generators of the group of automorphisms of a generalized Weyl algebra. We also explain previous results on the invariants of Weyl algebras and of primitive quotients

How to cite

top

Farinati, Marco A., Solotar, Andrea L., and Suárez-Álvarez, Mariano. "Hochschild homology and cohomology of generalized Weyl algebras." Annales de l’institut Fourier 53.2 (2003): 465-488. <http://eudml.org/doc/116043>.

@article{Farinati2003,
abstract = {We compute Hochschild homology and cohomology of a class of generalized Weyl algebras, introduced by V. V. Bavula in St. Petersbourg Math. Journal, 4 (1) (1999), 71-90. Examples of such algebras are the n-th Weyl algebras, $\{\mathcal \{U\}\}(\{\mathfrak \{s\}\}\{\mathfrak \{l\}\}_2)$, primitive quotients of $\{\mathcal \{U\}\}(\{\mathfrak \{s\}\}\{\mathfrak \{l\}\}_2)$, and subalgebras of invariants of these algebras under finite cyclic groups of automorphisms. We answer a question of Bavula–Jordan (Trans. A.M.S., 353 (2) (2001), 769-794) concerning the generators of the group of automorphisms of a generalized Weyl algebra. We also explain previous results on the invariants of Weyl algebras and of primitive quotients},
affiliation = {Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentine); Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentine); Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentine)},
author = {Farinati, Marco A., Solotar, Andrea L., Suárez-Álvarez, Mariano},
journal = {Annales de l’institut Fourier},
keywords = {Hochschild cohomology; generalized Weyl algebras; automorphism group; algebras of invariants; automorphism groups; skew polynomial extensions},
language = {eng},
number = {2},
pages = {465-488},
publisher = {Association des Annales de l'Institut Fourier},
title = {Hochschild homology and cohomology of generalized Weyl algebras},
url = {http://eudml.org/doc/116043},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Farinati, Marco A.
AU - Solotar, Andrea L.
AU - Suárez-Álvarez, Mariano
TI - Hochschild homology and cohomology of generalized Weyl algebras
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 2
SP - 465
EP - 488
AB - We compute Hochschild homology and cohomology of a class of generalized Weyl algebras, introduced by V. V. Bavula in St. Petersbourg Math. Journal, 4 (1) (1999), 71-90. Examples of such algebras are the n-th Weyl algebras, ${\mathcal {U}}({\mathfrak {s}}{\mathfrak {l}}_2)$, primitive quotients of ${\mathcal {U}}({\mathfrak {s}}{\mathfrak {l}}_2)$, and subalgebras of invariants of these algebras under finite cyclic groups of automorphisms. We answer a question of Bavula–Jordan (Trans. A.M.S., 353 (2) (2001), 769-794) concerning the generators of the group of automorphisms of a generalized Weyl algebra. We also explain previous results on the invariants of Weyl algebras and of primitive quotients
LA - eng
KW - Hochschild cohomology; generalized Weyl algebras; automorphism group; algebras of invariants; automorphism groups; skew polynomial extensions
UR - http://eudml.org/doc/116043
ER -

References

top
  1. J. Alev, M. Farinati, T. Lambre, A. Solotar, Homologie des invariants d'une algèbre de Weyl sous l'action d'un groupe fini, J. of Alg. Vol. 232 (2000), 564-577 Zbl1002.16005MR1792746
  2. J. Alev, T. Lambre, Comparaison de l'homologie de Hochschild et de l'homologie de Poisson pour une déformation des surfaces de Klein, Algebra and Operator Theory, Proceedings of the Colloquium, Tashkent (1998), 25-38, Kluwer Academic publishers Zbl0931.16007
  3. J. Alev, T. Lambre, Homologie des invariants d'une algèbre de Weyl, K-Theory 18 (1999), 401-411 Zbl0983.16007MR1738900
  4. V. Bavula, Generalized Weyl algebras and their representations, St. Petersbourg Math. J 4 (1990), 71-90 Zbl0807.16027MR1171955
  5. V. Bavula, D. Jordan, Isomorphism problems and groups automorphisms for generalized Weyl algebras, Trans. Am. Math. Soc 353 (2001), 769-794 Zbl0961.16016MR1804517
  6. V. Bavula, T. Lenagan, Krull dimension of generalized Weyl algebras with noncommutative coefficients, J. of Alg 235 (2001), 315-358 Zbl0998.16014MR1807668
  7. D. Burghelea, M. Vigué-Poirrier, Cyclic homology of commutative algebras, I, Springer Lecture Notes in Math 1318 (1988), 51-72 Zbl0666.13007MR952571
  8. H. Cartan, S. Eilenberg, Homological algebra, (1956), Princeton Univ. Press, Princeton Zbl0075.24305MR77480
  9. J. Dixmier, [unknown], J. of Alg. 24 (1973), 551-574 Zbl0252.17004MR310031
  10. P. Etingof, V. Ginzburg, Symplectic reflection algebras, Calogero-Moser spaces, and deformed Harish-Chandra homomorphism Zbl1061.16032
  11. O. Fleury, Automorphismes d'algèbres enveloppantes classiques et quantifiées : sous-groupes finis et invariants, (1997) 
  12. O. Fleury, Sur les invariants de B λ sous l’action de sous-groupes finis d’automorphismes: conjecture de Gelfand - Kirillov et homologie de Hochschild, Comm. in Alg 29 (2001), 3535-3557 Zbl0992.17008MR1849502
  13. T.J. Hodges, Noncommutative deformations of type-A Kleinian singularities, J. Algebra 161 (1993), 271-290 Zbl0807.16029MR1247356
  14. C. Kassel, L'homologie cyclique des algèbres enveloppantes, Invent. Math 91 (1988), 221-251 Zbl0653.17007MR922799
  15. C. Kassel, M. Vigué-Poirrier, Homologie des quotients primitifs de l’algèbre enveloppante de 𝔰 𝔩 2 , Math. Ann 294 (1992), 483-502 Zbl0767.17017MR1188133
  16. S. Smith, A class of algebras similar to the enveloping algebra of 𝔰 𝔩 2 , Trans. Am. Math. Soc 322 (1990), 285-314 Zbl0732.16019MR972706
  17. T. A. Springer, Invariant theory, 585 (1977), Springer-Verlag, Berlin-Heidelberg-New York Zbl0346.20020
  18. R. Sridharan, Filtered algebras and representations of Lie algebras, Trans. Am. Math. Soc 100 (1961), 530-550 Zbl0099.02301MR130900
  19. D. {#x015E;}tefan, Hochschild cohomology on Hopf-Galois extensions, J. Pure Appl. Alg 103 (1995), 221-233 Zbl0838.16008
  20. M. Suárez-Álvarez, Multiplicative structure of Hochschild cohomology of the ring of invariants of a Weyl algebra under finite groups Zbl1008.16006
  21. M. Suárez-Álvarez, [unknown] 
  22. M. Van den Bergh, A relation between Hochschild homology and cohomology for Gorenstein rings, Proc. Am. Math. Soc 126 (1998), 1345-1348 Zbl0894.16005MR1443171
  23. M. Van den Bergh, A relation between Hochschild homology and cohomology for Gorenstein rings (Erratum) Zbl0894.16005MR1443171

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.