On the growth of Sobolev norms for the cubic Szegő equation

Patrick Gérard[1]; Sandrine Grellier[2]

  • [1] Université Paris-Sud Laboratoire de Mathématiques d’Orsay CNRS, UMR 8628 France
  • [2] MAPMO-UMR 6628 Département de Mathématiques Université d’Orleans 45067 Orléans Cedex 2 France

Séminaire Laurent Schwartz — EDP et applications (2014-2015)

  • Volume: 13, Issue: 2, page 1-20
  • ISSN: 2266-0607

Abstract

top
We report on a recent result establishing that trajectories of the cubic Szegő equation in Sobolev spaces with high regularity are generically unbounded, and moreover that, on solutions generated by suitable bounded subsets of initial data, every polynomial bound in time fails for high Sobolev norms. The proof relies on an instability phenomenon for a new nonlinear Fourier transform describing explicitly the solutions to the initial value problem, which is inherited from the Lax pair structure enjoyed by the equation.

How to cite

top

Gérard, Patrick, and Grellier, Sandrine. "On the growth of Sobolev norms for the cubic Szegő equation." Séminaire Laurent Schwartz — EDP et applications 13.2 (2014-2015): 1-20. <http://eudml.org/doc/275684>.

@article{Gérard2014-2015,
abstract = {We report on a recent result establishing that trajectories of the cubic Szegő equation in Sobolev spaces with high regularity are generically unbounded, and moreover that, on solutions generated by suitable bounded subsets of initial data, every polynomial bound in time fails for high Sobolev norms. The proof relies on an instability phenomenon for a new nonlinear Fourier transform describing explicitly the solutions to the initial value problem, which is inherited from the Lax pair structure enjoyed by the equation.},
affiliation = {Université Paris-Sud Laboratoire de Mathématiques d’Orsay CNRS, UMR 8628 France; MAPMO-UMR 6628 Département de Mathématiques Université d’Orleans 45067 Orléans Cedex 2 France},
author = {Gérard, Patrick, Grellier, Sandrine},
journal = {Séminaire Laurent Schwartz — EDP et applications},
keywords = {Hankel operators; inverse spectral problems; compressed shift operator; action-angle variables},
language = {eng},
number = {2},
pages = {1-20},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {On the growth of Sobolev norms for the cubic Szegő equation},
url = {http://eudml.org/doc/275684},
volume = {13},
year = {2014-2015},
}

TY - JOUR
AU - Gérard, Patrick
AU - Grellier, Sandrine
TI - On the growth of Sobolev norms for the cubic Szegő equation
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2014-2015
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 13
IS - 2
SP - 1
EP - 20
AB - We report on a recent result establishing that trajectories of the cubic Szegő equation in Sobolev spaces with high regularity are generically unbounded, and moreover that, on solutions generated by suitable bounded subsets of initial data, every polynomial bound in time fails for high Sobolev norms. The proof relies on an instability phenomenon for a new nonlinear Fourier transform describing explicitly the solutions to the initial value problem, which is inherited from the Lax pair structure enjoyed by the equation.
LA - eng
KW - Hankel operators; inverse spectral problems; compressed shift operator; action-angle variables
UR - http://eudml.org/doc/275684
ER -

References

top
  1. Adamyan, V. M., Arov, D. Z., Krein, M. G., Analytic properties of the Schmidt pairs of a Hankel operator and the generalized Schur-Takagi problem. (Russian) Mat. Sb. (N.S.) 86(128) (1971), 34–75; English transl. Math USSR. Sb. 15 (1971), 31–73. Zbl0248.47019MR298453
  2. Bourgain, J., Problems in Hamiltonian PDE’s, Geom. Funct. Anal. (2000), Special Volume, Part I, 32–56. Zbl1050.35016MR1826248
  3. Bourgain, J., On the growth in time of higher Sobolev norms of smooth solutions of Hamiltonian PDE, Internat. Math. Res. Notices, (1996), 277-304. Zbl0934.35166MR1386079
  4. Burq, N., Gérard, P., Tzvetkov, N.: Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds Amer. J. Math. 126, 569–605 (2004). Zbl1067.58027MR2058384
  5. Colliander J., Keel M., Staffilani G., Takaoka H., Tao, T., Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrodinger equation, Inventiones Math.181 (2010), 39–113. Zbl1197.35265MR2651381
  6. Dodson, B., Global well-posedness and scattering for the defocusing, L 2 -critical, nonlinear Schrödinger equation when d = 2 , http://arxiv.org/abs/1006.1375, preprint, 2011. Zbl1236.35163MR2869023
  7. Gérard, P., Grellier, S., The cubic Szegő equation , Ann. Scient. Éc. Norm. Sup. 43 (2010), 761–810. Zbl1228.35225MR2721876
  8. Gérard, P., Grellier, S., Invariant Tori for the cubic Szegő equation, Invent. Math. 187 (2012), 707–754. Zbl1252.35026MR2944951
  9. Gérard, P., Grellier, S., Inverse spectral problems for compact Hankel operators, J. Inst. Math. Jussieu 13 (2014), 273–301. Zbl1304.47038MR3177280
  10. Gérard, P., Grellier, S., An explicit formula for the cubic Szegő equation, to appear in Trans. A.M.S. Zbl1318.37024
  11. Gérard, P., Grellier, S., Effective integrable dynamics for a certain nonlinear wave equation, Anal. PDEs 5 (2012), 1139–1155. Zbl1268.35013MR3022852
  12. Gérard, P., Pushnitski, A., An inverse problem for self-adjoint positive Hankel operators, http://arxiv.org/abs/1401.2042, to appear in IMRN. Zbl06465113
  13. Ginibre, J., Velo, G. Scattering theory in the energy space for a class of nonlinear Schršdinger equations, J. Math. Pures Appl. (9) 64 (1985), no. 4, 363–401. Zbl0535.35069MR839728
  14. Guardia, M., Kaloshin, V., Growth of Sobolev norms in the cubic defocusing nonlinear Schrödinger equation, arXiv:1205.5188[math.AP], to appear in J. European Math. Soc. Zbl1311.35284MR3312404
  15. Grébert, B., Kappeler, T., The defocusing NLS equation and Its Normal Form, EMS series of Lectures in Mathematics, European Mathematical Society, 2014. Zbl1298.35002MR3203027
  16. Hani, Z., Long-time strong instability and unbounded orbits for some periodic nonlinear Schrödinger equations, to appear Acce in Archives for Rational Mechanics and Analysis. http://arxiv.org/abs/1210.7509. 
  17. Hani, Z., Pausader, B., Tzvetkov, N., Visciglia, N., Modified scattering for the cubic Schrödinger equations on product spaces and applications, http://arxiv.org/abs/1311.2275, 2013. Zbl1326.35348
  18. Hernández B. A., Frías-Armenta M. E., Verduzco F., On differential structures of polynomial spaces in control theory, Journal of Systems Science and Systems Engineering 21 (2012), 372–382. 
  19. Kappeler, T., Pöschel, J., KdV & KAM, A Series of Modern Surveys in Mathematics, vol. 45, Springer-Verlag, 2003. Zbl1187.35237MR1997070
  20. Killip, R., Tao, T., Visan, M., The cubic nonlinear Schršdinger equation in two dimensions with radial data. J. Eur. Math. Soc. 11 (2009), 1203–1258. Zbl0162.41103MR2557134
  21. Lax, P. : Integrals of Nonlinear equations of Evolution and Solitary Waves, Comm. Pure and Applied Math. 21, 467–490 (1968). Zbl0882.76035MR235310
  22. Majda, A., Mc Laughlin, D., Tabak, E., A one dimensional model for dispersive wave turbulence, J. Nonlinear Sci. 7 (1997) 9–44. Zbl1007.47001MR1431687
  23. Nikolskii, N. K., Operators, functions, and systems: an easy reading. Vol. 1. Hardy, Hankel, and Toeplitz. Translated from the French by Andreas Hartmann. Mathematical Surveys and Monographs, 92. American Mathematical Society, Providence, RI, 2002. Zbl1030.47002MR1864396
  24. Peller, V.V., Hankel Operators and their applications Springer Monographs in Mathematics. Springer-Verlag, New York, 2003. Zbl1235.35263MR1949210
  25. Pocovnicu, O. Explicit formula for the solution of the Szegő equation on the real line and applications, Discrete Cont. Dyn. Syst. 31 (2011), 607–649. Zbl1270.65060MR2825631
  26. Pocovnicu, O. First and second order approximations of a nonlinear wave equation J. Dynam. Differential Equations, article no. 9286 (2013), 29 pp, http://dx.doi.org/10.1007/s10884-013-9286-5. Zbl1160.35067MR3054639
  27. Ryckman, E., Visan, M., Global well-posedness and scattering for the defocusing energy-critical nonlinear Schršdinger equation in 1 + 4 . Amer. J. Math. 129 (2007), 1–60. Zbl0874.35114MR2288737
  28. Staffilani, G., On the growth of high Sobolev norms of solutions for KdV and Schrödinger equations, Duke Math. J., 86 (1997), 109-142. Zbl0874.35114MR1427847
  29. Thirouin, J., work in preparation. 
  30. Xu, H., Large time blow up for a perturbation of the cubic Szegő equation, Anal. PDE, 7 (2014), No. 3, 717–731. Zbl1302.37042MR3227431
  31. Zakharov, V. E., Shabat, A. B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Soviet Physics JETP 34 (1972), no. 1, 62–69. Zbl0986.76032MR406174
  32. Zakharov, V., Guyenne, P., Pushkarev, A., Dias, F., Wave turbulence in one-dimensional models, Physica D 152–153 (2001) 573–619. Zbl0986.76032MR1837930

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.