The cubic Szegő equation

Patrick Gérard; Sandrine Grellier

Annales scientifiques de l'École Normale Supérieure (2010)

  • Volume: 43, Issue: 5, page 761-810
  • ISSN: 0012-9593

Abstract

top
We consider the following Hamiltonian equation on the L 2 Hardy space on the circle, i t u = Π ( | u | 2 u ) , where Π is the Szegő projector. This equation can be seen as a toy model for totally non dispersive evolution equations. We display a Lax pair structure for this equation. We prove that it admits an infinite sequence of conservation laws in involution, and that it can be approximated by a sequence of finite dimensional completely integrable Hamiltonian systems. We establish several instability phenomena illustrating the degeneracy of this completely integrable structure. We also classify the traveling waves for this system.

How to cite

top

Gérard, Patrick, and Grellier, Sandrine. "The cubic Szegő equation." Annales scientifiques de l'École Normale Supérieure 43.5 (2010): 761-810. <http://eudml.org/doc/272217>.

@article{Gérard2010,
abstract = {We consider the following Hamiltonian equation on the $L^2$ Hardy space on the circle,\[i\partial \_tu=\Pi (|u|^2u)\ ,\]where $\Pi $ is the Szegő projector. This equation can be seen as a toy model for totally non dispersive evolution equations. We display a Lax pair structure for this equation. We prove that it admits an infinite sequence of conservation laws in involution, and that it can be approximated by a sequence of finite dimensional completely integrable Hamiltonian systems. We establish several instability phenomena illustrating the degeneracy of this completely integrable structure. We also classify the traveling waves for this system.},
author = {Gérard, Patrick, Grellier, Sandrine},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {nonlinear schrödinger equations; integrable hamiltonian systems; Lax pairs; Hankel operators},
language = {eng},
number = {5},
pages = {761-810},
publisher = {Société mathématique de France},
title = {The cubic Szegő equation},
url = {http://eudml.org/doc/272217},
volume = {43},
year = {2010},
}

TY - JOUR
AU - Gérard, Patrick
AU - Grellier, Sandrine
TI - The cubic Szegő equation
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2010
PB - Société mathématique de France
VL - 43
IS - 5
SP - 761
EP - 810
AB - We consider the following Hamiltonian equation on the $L^2$ Hardy space on the circle,\[i\partial _tu=\Pi (|u|^2u)\ ,\]where $\Pi $ is the Szegő projector. This equation can be seen as a toy model for totally non dispersive evolution equations. We display a Lax pair structure for this equation. We prove that it admits an infinite sequence of conservation laws in involution, and that it can be approximated by a sequence of finite dimensional completely integrable Hamiltonian systems. We establish several instability phenomena illustrating the degeneracy of this completely integrable structure. We also classify the traveling waves for this system.
LA - eng
KW - nonlinear schrödinger equations; integrable hamiltonian systems; Lax pairs; Hankel operators
UR - http://eudml.org/doc/272217
ER -

References

top
  1. [1] V. I. Arnold, Mathematical methods of classical mechanics, Springer, 1978. Zbl0386.70001MR690288
  2. [2] B. Birnir, C. E. Kenig, G. Ponce, N. Svanstedt & L. Vega, On the ill-posedness of the IVP for the generalized Korteweg-de Vries and nonlinear Schrödinger equations, J. London Math. Soc.53 (1996), 551–559. Zbl0855.35112MR1396718
  3. [3] H. Brezis & T. Gallouët, Nonlinear Schrödinger evolution equations, Nonlinear Anal.4 (1980), 677–681. Zbl0451.35023MR582536
  4. [4] N. Burq, P. Gérard & N. Tzvetkov, An instability property of the nonlinear Schrödinger equation on S d , Math. Res. Lett.9 (2002), 323–335. Zbl1003.35113
  5. [5] N. Burq, P. Gérard & N. Tzvetkov, Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math.126 (2004), 569–605. Zbl1067.58027
  6. [6] N. Burq, P. Gérard & N. Tzvetkov, Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces, Invent. Math.159 (2005), 187–223. Zbl1092.35099
  7. [7] N. Burq, P. Gérard & N. Tzvetkov, Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations, Ann. Sci. École Norm. Sup.38 (2005), 255–301. Zbl1116.35109
  8. [8] N. Burq, P. Gérard & N. Tzvetkov, High frequency solutions of the nonlinear Schrödinger equation on surfaces, Quart. Appl. Math.68 (2010), 61–71. Zbl1187.35232
  9. [9] J. Colliander, M. Keel, G. Staffilani, H. Takaoka & T. Tao, Weakly turbulent solutions for the cubic defocusing nonlinear Schrödinger equation, preprint arXiv:08081742. Zbl1178.35345
  10. [10] P. Gérard, Nonlinear Schrödinger equations in inhomogeneous media: wellposedness and illposedness of the Cauchy problem, in International Congress of Mathematicians. Vol. III, Eur. Math. Soc., Zürich, 2006, 157–182. Zbl1106.35096
  11. [11] P. Gérard & S. Grellier, L’équation de Szegő cubique, Séminaire X-EDP, École polytechnique, 2008. Zbl1213.35397
  12. [12] M. Grillakis, J. Shatah & W. Strauss, Stability theory of solitary waves in the presence of symmetry. II, J. Funct. Anal. 94 (1990), 308–348. Zbl0711.58013
  13. [13] T. Kappeler & J. Pöschel, KdV & KAM, Ergebnisse Math. Grenzg. 45, Springer, 2003. 
  14. [14] L. Kronecker, Zur Theorie der Elimination einer Variablen aus zwei algebraischen Gleichungen, Monatsber. königl. preuss. Akad. Wiss. (1881), 535–600, reprinted in Mathematische Werke, vol. 2, 113–192, Chelsea, 1968. Zbl13.0114.02JFM13.0114.02
  15. [15] S. B. Kuksin, Analysis of Hamiltonian PDEs, Oxford Lecture Series in Mathematics and its Applications 19, Oxford Univ. Press, 2000. Zbl0960.35001MR1857574
  16. [16] P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math.21 (1968), 467–490. Zbl0162.41103MR235310
  17. [17] Z. Nehari, On bounded bilinear forms, Ann. of Math.65 (1957), 153–162. Zbl0077.10605MR82945
  18. [18] F. Nier, Bose-Einstein condensates in the lowest Landau level: Hamiltonian dynamics, Rev. Math. Phys.19 (2007), 101–130. Zbl1129.82023MR2293086
  19. [19] N. K. Nikolski, Operators, functions, and systems: an easy reading. Vol. 1, Mathematical Surveys and Monographs 92, Amer. Math. Soc., 2002. Zbl1007.47001MR1864396
  20. [20] T. Ogawa, A proof of Trudinger’s inequality and its application to nonlinear Schrödinger equations, Nonlinear Anal.14 (1990), 765–769. Zbl0715.35073MR1049119
  21. [21] V. V. Peller, Hankel operators of class 𝔖 p and their applications (rational approximation, Gaussian processes, the problem of majorization of operators), Math. USSR Sb.41 (1982), 443–479. Zbl0478.47015
  22. [22] V. V. Peller, Hankel operators and their applications, Springer Monographs in Math., Springer, 2003. Zbl1030.47002MR1949210
  23. [23] W. Rudin, Real and complex analysis, third éd., McGraw-Hill Book Co., 1987, Analyse réelle et complexe, Masson, 1980. Zbl0278.26001MR662565
  24. [24] N. Tzvetkov, À la frontière entre EDP semi- et quasi-linéaires, HDR, Université Paris-Sud Orsay, 2003. 
  25. [25] M. V. Vladimirov, On the solvability of a mixed problem for a nonlinear equation of Schrödinger type, Sov. Math. Dokl.29 (1984), 281–284. Zbl0585.35019MR745511
  26. [26] M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1982/83), 567–576. Zbl0527.35023MR691044
  27. [27] V. I. Yudovich, Non-stationary flow of an ideal incompressible liquid, USSR Comput. Math. Math. Phys. 3 (1963), 1407–1456 (english), Zh. Vuch. Mat. 3 (1963), 1032–1066 (russian). Zbl0147.44303
  28. [28] V. E. Zakharov & A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Soviet Physics JETP34 (1972), 62–69. MR406174

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.