Well-posedness issues for the Prandtl boundary layer equations

David Gérard-Varet[1]; Nader Masmoudi[2]

  • [1] Univ Paris Diderot, Sorbonne Paris Cité, Institut de Mathématiques de Jussieu-Paris Rive Gauche, UMR 7586, CNRS, Sorbonne Universités, UPMC Univ Paris 06, F-75013, Paris, France
  • [2] Courant Institute, NYU, 251 Mercer Street, New-York 10012 USA

Séminaire Laurent Schwartz — EDP et applications (2013-2014)

  • Volume: 48, Issue: 6, page 1-10
  • ISSN: 2266-0607

Abstract

top
These notes are an introduction to the recent paper [7], about the well-posedness of the Prandtl equation. The difficulties and main ideas of the paper are described on a simpler linearized model.

How to cite

top

Gérard-Varet, David, and Masmoudi, Nader. "Well-posedness issues for the Prandtl boundary layer equations." Séminaire Laurent Schwartz — EDP et applications 48.6 (2013-2014): 1-10. <http://eudml.org/doc/275693>.

@article{Gérard2013-2014,
abstract = {These notes are an introduction to the recent paper [7], about the well-posedness of the Prandtl equation. The difficulties and main ideas of the paper are described on a simpler linearized model.},
affiliation = {Univ Paris Diderot, Sorbonne Paris Cité, Institut de Mathématiques de Jussieu-Paris Rive Gauche, UMR 7586, CNRS, Sorbonne Universités, UPMC Univ Paris 06, F-75013, Paris, France; Courant Institute, NYU, 251 Mercer Street, New-York 10012 USA},
author = {Gérard-Varet, David, Masmoudi, Nader},
journal = {Séminaire Laurent Schwartz — EDP et applications},
keywords = {boundary layer; Prandtl equation; Navier-Stokes equation; Gevrey spaces},
language = {eng},
number = {6},
pages = {1-10},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Well-posedness issues for the Prandtl boundary layer equations},
url = {http://eudml.org/doc/275693},
volume = {48},
year = {2013-2014},
}

TY - JOUR
AU - Gérard-Varet, David
AU - Masmoudi, Nader
TI - Well-posedness issues for the Prandtl boundary layer equations
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2013-2014
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 48
IS - 6
SP - 1
EP - 10
AB - These notes are an introduction to the recent paper [7], about the well-posedness of the Prandtl equation. The difficulties and main ideas of the paper are described on a simpler linearized model.
LA - eng
KW - boundary layer; Prandtl equation; Navier-Stokes equation; Gevrey spaces
UR - http://eudml.org/doc/275693
ER -

References

top
  1. R. Alexandre, Y.-G. Wang, C.-J. Xu, and T. Yang. Well-posedness of the Prandtl equation in sobolev spaces. J. Amer. Math. Soc., 2014. Zbl1317.35186
  2. J. Bedrossian and N. Masmoudi. Asymptotic stability for the Couette flow in the 2D Euler equations. Appl. Math. Res. Express. AMRX, 1:157–175, 2014. Zbl1291.35198MR3181786
  3. S. J. Cowley, L. M. Hocking, and O. R. Tutty. The stability of solutions of the classical unsteady boundary-layer equation. Phys. Fluids, 28(2):441–443, 1985. Zbl0585.76051MR785112
  4. A. B. Ferrari and E. S. Titi. Gevrey regularity for nonlinear analytic parabolic equations. Comm. Partial Differential Equations, 23(1-2):1–16, 1998. Zbl0907.35061MR1608488
  5. C. Foias and R. Temam. Gevrey class regularity for the solutions of the Navier-Stokes equations. J. Funct. Anal., 87(2):359–369, 1989. Zbl0702.35203MR1026858
  6. D. Gérard-Varet and E. Dormy. On the ill-posedness of the Prandtl equation. J. Amer. Math. Soc., 23(2):591–609, 2010. Zbl1197.35204MR2601044
  7. D. Gerard-Varet and N. Masmoudi. Well-posedness for the prandtl system without analyticity or monotonicity. http://arxiv.org/abs/1305.0221, 2014. Zbl06543144
  8. D. Gérard-Varet and T. Nguyen. Remarks on the ill-posedness of the Prandtl equation. Asymtotic Analysis, 77:71–88, 2012. Zbl1238.35178MR2952715
  9. E. Grenier. On the stability of boundary layers of incompressible Euler equations. J. Differential Equations, 164(1):180–222, 2000. Zbl0958.35106MR1761422
  10. E. Guyon, J. Hulin, and L. Petit. Hydrodynamique physique, volume 142 of EDP Sciences. CNRS Editions, Paris, 2001. 
  11. L. Hong and J. K. Hunter. Singularity formation and instability in the unsteady inviscid and viscous Prandtl equations. Commun. Math. Sci., 1(2):293–316, 2003. Zbl1084.76020MR1980477
  12. J. P. Kelliher. Bonus to the paper : Vanishing viscosity and the accumulation of vorticity on the boundary. Available at http://math.ucr.edu/~kelliher/JKPapers.html. Zbl1161.76012
  13. I. Kukavica, N. Masmoudi, V. Vicol, and T. K. Wong. On the local well-posedness of the Prandtl and the hydrostatic Euler equations with multiple monotonicity regions. http://arxiv.org/abs/1402.1984, 2014. Zbl1317.35202
  14. I. Kukavica and V. Vicol. On the local existence of analytic solutions to the Prandtl boundary layer equations. Communications in Mathematical Sciences, 11(1):269–292, 2013. Zbl1291.35224MR2975371
  15. C. D. Levermore and M. Oliver. Analyticity of solutions for a generalized Euler equation. J. Differential Equations, 133(2):321–339, 1997. Zbl0876.35090MR1427856
  16. M. C. Lombardo, M. Cannone, and M. Sammartino. Well-posedness of the boundary layer equations. SIAM J. Math. Anal., 35(4):987–1004 (electronic), 2003. Zbl1053.76013MR2049030
  17. N. Masmoudi and T. K. Wong. Local in time existence and uniqueness of solutions to the Prandtl equations by energy methods. to appear in CPAM, 2012. 
  18. N. Masmoudi and T. K. Wong. On the H s theory of hydrostatic Euler equations. Arch. Ration. Mech. Anal., 204(1):231–271, 2012. Zbl1317.76017MR2898740
  19. O. A. Oleinik and V. N. Samokhin. Mathematical models in boundary layer theory, volume 15 of Applied Mathematics and Mathematical Computation. Chapman & Hall/CRC, Boca Raton, FL, 1999. Zbl0928.76002MR1697762
  20. M. Oliver and E. S. Titi. Analyticity of the attractor and the number of determining nodes for a weakly damped driven nonlinear Schrödinger equation. Indiana Univ. Math. J., 47(1):49–73, 1998. Zbl0912.35144MR1631612
  21. L. Prandtl. Boundary layer. Verhandlung Internationalen Mathematiker-Kongresses, Heidelberg,, pages 484–491, 1904. 
  22. O. Reynolds. n experimental investigation of the circumstances which determine whether the motion of water in parallel channels shall be direct or sinuous and of the law of resistance in parallel channels. Philos. Trans. R. Soc., 174:935–82, 1883. Zbl16.0845.02
  23. M. Sammartino and R. E. Caflisch. Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations. Comm. Math. Phys., 192(2):433–461, 1998. Zbl0913.35102MR1617542
  24. Z. Xin and L. Zhang. On the global existence of solutions to the Prandtl’s system. Adv. Math., 181(1):88–133, 2004. Zbl1052.35135MR2020656

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.