The -th prime asymptotically
Juan Arias de Reyna[1]; Jérémy Toulisse[2]
- [1] Universidad de Sevilla Facultad de Matemáticas Apdo. 1160, 41080-Sevilla Spain
- [2] University of Luxembourg, Campus Kirchberg Mathematics Research Unit, BLG 6, rue Richard Coudenhove-Kalergi L-1359 Luxembourg Grand Duchy of Luxembourg
Journal de Théorie des Nombres de Bordeaux (2013)
- Volume: 25, Issue: 3, page 521-555
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topArias de Reyna, Juan, and Toulisse, Jérémy. "The $n$-th prime asymptotically." Journal de Théorie des Nombres de Bordeaux 25.3 (2013): 521-555. <http://eudml.org/doc/275705>.
@article{AriasdeReyna2013,
abstract = {A new derivation of the classic asymptotic expansion of the $n$-th prime is presented. A fast algorithm for the computation of its terms is also given, which will be an improvement of that by Salvy (1994).Realistic bounds for the error with $\operatorname\{li\}^\{-1\}(n)$, after having retained the first $m$ terms, for $1\le m\le 11$, are given. Finally, assuming the Riemann Hypothesis, we give estimations of the best possible $r_3$ such that, for $n\ge r_3$, we have $p_n> s_3(n)$ where $s_3(n)$ is the sum of the first four terms of the asymptotic expansion.},
affiliation = {Universidad de Sevilla Facultad de Matemáticas Apdo. 1160, 41080-Sevilla Spain; University of Luxembourg, Campus Kirchberg Mathematics Research Unit, BLG 6, rue Richard Coudenhove-Kalergi L-1359 Luxembourg Grand Duchy of Luxembourg},
author = {Arias de Reyna, Juan, Toulisse, Jérémy},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {-th prime; asymptotic expansion; Riemann hypothesis},
language = {eng},
month = {11},
number = {3},
pages = {521-555},
publisher = {Société Arithmétique de Bordeaux},
title = {The $n$-th prime asymptotically},
url = {http://eudml.org/doc/275705},
volume = {25},
year = {2013},
}
TY - JOUR
AU - Arias de Reyna, Juan
AU - Toulisse, Jérémy
TI - The $n$-th prime asymptotically
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2013/11//
PB - Société Arithmétique de Bordeaux
VL - 25
IS - 3
SP - 521
EP - 555
AB - A new derivation of the classic asymptotic expansion of the $n$-th prime is presented. A fast algorithm for the computation of its terms is also given, which will be an improvement of that by Salvy (1994).Realistic bounds for the error with $\operatorname{li}^{-1}(n)$, after having retained the first $m$ terms, for $1\le m\le 11$, are given. Finally, assuming the Riemann Hypothesis, we give estimations of the best possible $r_3$ such that, for $n\ge r_3$, we have $p_n> s_3(n)$ where $s_3(n)$ is the sum of the first four terms of the asymptotic expansion.
LA - eng
KW - -th prime; asymptotic expansion; Riemann hypothesis
UR - http://eudml.org/doc/275705
ER -
References
top- E. Cesàro, Sur une formule empirique de M. Pervouchine, C. R. Math. Acad. Sci. Paris 119 (1894), 848–849. (also in [2]).
- E. Cesàro, Opere Scelte, Vol. I, Parte Seconda, Edizioni Cremonese, Roma, 1965. MR260555
- M. Cipolla, La determinazione assintotica dell’ numero primo, Rend. Accad. Sci. Fis-Mat. Napoli (3) 8 (1902), 132–166.
- P. Dusart, The -th prime is greater than for , Math. Comp. 68 (1999), 411–415. Zbl0913.11039MR1620223
- P. Dusart, Estimates of some functions over primes without R.H., arXiv 1002:0442 (2010). http://front.math.ucdavis.edu/1002.0442.
- E. Landau, Über die Multiplikation Dirichlet’scher Reihen, Rend. Circ. Matem. Palermo, 24 (1907), 81–159. Zbl38.0322.01
- E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Teubner, Leipzig 1909. [Reprint: Chelsea 1953]. Zbl40.0232.08
- S. Lang, Algebra, Revised 3rd edition, Springer, New York 2002. Zbl0984.00001MR1878556
- J.-P. Massias, Ordre maximum d’un élément du groupe symétrique et applications, Thèse de 3ème cycle, Limoges, France, 1985.
- J.-P. Massias, J. L. Nicolas & G. Robin, Evaluation asymptotique de l’ordre maximum d’un élément du groupe symétrique, Acta Arithmetica 50 (1988), 221–242 Zbl0588.10049MR960551
- J.-P. Massias & G. Robin, Bornes effectives pour certaines fonctions concernant les nombres premiers, J. Théor. Nombres Bordeaux 8 (1996), 215–242. Zbl0856.11043MR1399956
- H. L. Montgomery & R. C. Vaughan, Multiplicative Number Theory: I Classical Theory, Cambridge University Press, 2006. Zbl1245.11002MR2378655
- I. M. Pervushin, Les formules pour la détermination approximative des nombres premiers, de leur somme et de leur différence d’après le numéro de ces nombres, Nachrichten der physiko-mathematischen Gesellschaft der Kaiserlichen Universität zu Kasan, (2) 4 (1894), 94–96.
- I. M. Pervushin, Les formules pour la détermination approximative des nombres premiers, de leur somme et de leur différence d’après le numéro de ces nombres, Verhandlungen des ersten internationalen Mathematiker-Kongresses in Zürich vom 9 bis 11 August 1897, Leipzig, Teubner, 1898.
- G. Robin, Estimation de la fonction de Tchebychef sur le -ieme nombre premier et grandes valeurs de la fonction , nombre de diviseurs premiers de , Acta Arithmetica 42 (1983), 367–389. Zbl0475.10034MR736719
- G. Robin, Permanence de relations de récurrence dans certains développements asymptotiques, Publ. Inst. Math. (Beograd) (N.S.) 43(57) (1988), 17–25. Zbl0655.10040MR962251
- B. Rosser, The -th prime is greater than , Proc. London Math. Soc. (2) 45 (1939), 21–44. Zbl0019.39401MR1576808
- B. Rosser & L. Schoenfeld, Sharper bounds for the Chebyshev Functions and , Math. Comp. 29 (1975), 243–269. Zbl0295.10036MR457373
- B. Salvy, Fast computation of some asymptotic functional inverses, J. Symbolic Comput. 17 (1994), 227–236. Zbl0840.11052MR1287330
- L. Schoenfeld, Sharper Bounds for the Chebyshev Functions and . II, Math. Comp. 30 (1976), 337-360. Zbl0326.10037MR457374
- G. Torelli, Sulla totalità dei numeri primi fino a un limite assegnato, Atti della Reale Accademia delle Scienze Fisiche e Matematiche, Napoli (2) 11 (1901), 1–222.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.