Quadratic modular symbols on Shimura curves
Pilar Bayer[1]; Iván Blanco-Chacón[2]
- [1] Facultat de Matemàtiques Universitat de Barcelona Gran Via de les Corts Catalanes, 585 08007 Barcelona, Spain
- [2] Department of Mathematics and Systems Analysis Aalto University Otakaari 1, M FI-00076 Espoo, Finland
Journal de Théorie des Nombres de Bordeaux (2013)
- Volume: 25, Issue: 2, page 261-283
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topBayer, Pilar, and Blanco-Chacón, Iván. "Quadratic modular symbols on Shimura curves." Journal de Théorie des Nombres de Bordeaux 25.2 (2013): 261-283. <http://eudml.org/doc/275719>.
@article{Bayer2013,
abstract = {We introduce the concept of quadratic modular symbol and study how these symbols are related to quadratic$p$-adic $L$-functions. These objects were introduced in [3] in the case of modular curves. In this paper, we discuss a method to attach quadratic modular symbols and quadratic $p$-adic $L$-functions to more general Shimura curves.},
affiliation = {Facultat de Matemàtiques Universitat de Barcelona Gran Via de les Corts Catalanes, 585 08007 Barcelona, Spain; Department of Mathematics and Systems Analysis Aalto University Otakaari 1, M FI-00076 Espoo, Finland},
author = {Bayer, Pilar, Blanco-Chacón, Iván},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Shimura curve; modular symbol; -function},
language = {eng},
month = {9},
number = {2},
pages = {261-283},
publisher = {Société Arithmétique de Bordeaux},
title = {Quadratic modular symbols on Shimura curves},
url = {http://eudml.org/doc/275719},
volume = {25},
year = {2013},
}
TY - JOUR
AU - Bayer, Pilar
AU - Blanco-Chacón, Iván
TI - Quadratic modular symbols on Shimura curves
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2013/9//
PB - Société Arithmétique de Bordeaux
VL - 25
IS - 2
SP - 261
EP - 283
AB - We introduce the concept of quadratic modular symbol and study how these symbols are related to quadratic$p$-adic $L$-functions. These objects were introduced in [3] in the case of modular curves. In this paper, we discuss a method to attach quadratic modular symbols and quadratic $p$-adic $L$-functions to more general Shimura curves.
LA - eng
KW - Shimura curve; modular symbol; -function
UR - http://eudml.org/doc/275719
ER -
References
top- M. Alsina, P. Bayer, Quaternion orders, quadratic forms and Shimura curves. CRM Monograph Series 22. American Mathematical Society, 2004. Zbl1073.11040MR2038122
- M. A. Armstrong, On the fundamental group of an orbit space. Proc. Cambridge Philos. Soc. 61 (1965), 639–646. Zbl0125.40002MR187244
- P. Bayer, I. Blanco-Chacon, Quadratic modular symbols. RACSAM 106, n. 2 (2012), 429–441. Zbl1329.11065MR2978924
- P. Bayer, A. Travesa (eds.), Corbes modulars: taules. Notes del Seminari de Teoria de Nombres (UB-UAB-UPC). Universitat de Barcelona 1 (1996).
- B. Birch, Heegner points: the beginnings. In Heegner points and Rankin -series. Math. Sci. Res. Inst. Publ. 49. Cambridge Univ. Press, 2004. Zbl1073.11001MR2083207
- I. Blanco-Chacon, Upper triangular operators and -adic -functions. -adic numbers, -adic analyisis and applications 3 (2011), 1–14. Zbl1279.11089MR2802032
- J. E. Cremona, Algorithms for modular elliptic curves. Cambridge University Press, 1997. Zbl0758.14042MR1628193
- H. Jacquet, R. Langlands, Automorphic forms on GL(2). Lecture Notes in Mathematics 114. Springer-Verlag, 1970. Zbl0236.12010MR401654
- Ju. Y. Manin, Parabolic points and zeta functions of modular curves. Mat. Sbornik 6 (1972), 19–64. Zbl0248.14010MR314846
- B. Mazur, J. Tate, J. Teitelbaum, On -adic analogues of the conjectures of Birch and Swinnerton-Dyer. Invent. Math. 84, n. 1 (1986), 1–48. Zbl0699.14028MR830037
- R. Pollack, G. Stevens, Overconvergent modular symbols and -adic -functions. Ann. Sci. Éc. Norm. Sup. 44, n. 1 (2011), 1–42. Zbl1268.11075MR2760194
- A. M. Robert, A course in -adic analysis. Graduate Texts in Mathematics 198, Springer, 2000. Zbl0947.11035MR1760253
- D. E. Rohrlich, -functions and division towers. Math. Ann. 281 (1988), 611–632. Zbl0656.14013MR958262
- G. Shimura, Construction of class fields and zeta functions of algebraic curves. Ann. of Math. 85, n. 2 (1967), 58–159. Zbl0204.07201MR204426
- G. Shimura, Introduction to the arithmetic theory of automorphic forms. Princeton University Press, 1971. Zbl0221.10029
- K. Takeuchi, Arithmetic Fuchsian groups with signature . J. Math. Soc. Japan 35, n. 3 (1983), 381–407. Zbl0517.20022MR702765
- M. F. Vignéras, Arithmétique des algèbres de quaternions. Lecture Notes in Mathematics 800. Springer, 1980. Zbl0422.12008MR580949
- Y. Yang, Schwarzian differential equations and Hecke eigenforms on Shimura curves. arXiv: 1110.6284v1, 2011. Zbl1305.11032MR3011876
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.