Delaunay polytopes derived from the Leech lattice
Mathieu Dutour Sikirić[1]; Konstantin Rybnikov[2]
- [1] Rudjer Bosković Institute 54 ulica Bijenicka 1000 Zagreb, Croatia
- [2] Department of Mathematical Sciences University of Massachusetts at Lowell MA 01854, Lowell, USA
Journal de Théorie des Nombres de Bordeaux (2014)
- Volume: 26, Issue: 1, page 85-101
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topReferences
top- A. Barvinok, A Course in Convexity. Graduate Studies in Mathematics 54, Amer. Math. Soc. 2002. Zbl1014.52001MR1940576
- H. Cohn, A. Kumar, Universally optimal distribution of points on spheres. J. Amer. Math. Soc. 20 (2007), 99–148. Zbl1198.52009MR2257398
- H. Cohn, A. Kumar, Optimality and uniqueness of the Leech lattice among lattices. Ann. of Math. 170 (2009), 1003–1050. Zbl1213.11144MR2600869
- J. H. Conway, R. A. Parker, N. J. A. Sloane, The covering radius of the Leech lattice. Proc. Roy. Soc. London Ser. A 380 (1982), 261–290. Zbl0496.10020
- J. H. Conway, N. J. A. Sloane, Sphere Packings, Lattices and Groups (third edition). Grundlehren der mathematischen Wissenschaften 290, Springer–Verlag, 1999. Zbl0915.52003MR1662447
- H. S. M. Coxeter, Extreme forms. Canadian J. Math. 3 (1951), 391–441. Zbl0044.04201MR44580
- P. Delsarte, J. M. Goethals, J. J. Seidel, Spherical codes and designs. Geometriae Dedicata 6 (1977), 363–388. Zbl0376.05015MR485471
- M. Deza, M. Dutour, The hypermetric cone on seven vertices. Experiment. Math. 12 (2004), 433–440. Zbl1101.11021MR2043993
- M. Deza, V. P. Grishukhin, M. Laurent, Extreme hypermetrics and L-polytopes. In G. Halász et al. eds, Sets, Graphs and Numbers, Budapest (Hungary), 1991, 60 Colloquia Mathematica Societatis János Bolyai (1992), 157–209. Zbl0784.11027MR1218190
- M. Deza, M. Laurent, Geometry of cuts and metrics. Springer–Verlag, 1997. Zbl1210.52001MR1460488
- M. Dutour, Infinite serie of extreme Delaunay polytopes. European J. Combin. 26 (2005), 129–132. Zbl1062.52013MR2101040
- M. Dutour Sikirić, A. Schürmann, F. Vallentin, Complexity and algorithms for computing Voronoi cells of lattices. Math. Comp. 78 (2009), 1713–1731. Zbl1215.11067MR2501071
- M. Dutour Sikirić, V. Grishukhin, How to compute the rank of a Delaunay polytope. European J. Combin. 28 (2007) 762–773. Zbl1117.52015MR2300757
- M. Dutour Sikirić, K. Rybnikov, Perfect but not generating Delaunay polytopes. Special issue of Symmetry Culture and Science on tesselations, Part II, 317–326.
- M. Dutour Sikirić, R. Erdahl, K. Rybnikov, Perfect Delaunay polytopes in low dimensions. Integers 7 (2007) A39. Zbl1194.52018MR2342197
- M. Dutour Sikirić, A. Schürmann, F. Vallentin, Inhomogeneous extreme forms. Ann. Inst. Fourier 62 (2012), 2227–2255. Zbl1309.11057MR3060757
- M. Dutour Sikirić, Enumeration of inhomogeneous perfect forms. In preparation.
- M. Dutour Sikirić, K. Rybnikov, A new algorithm in geometry of numbers. In Proceedings of ISVD-07, the 4-th International Symposium on Voronoi Diagrams in Science and Engineering, Pontypridd, Wales, July 2007. IEEE Publishing Services, 2007. Zbl1194.52018
- M. Dutour Sikirić, A. Schürmann, F. Vallentin, The contact polytope of the Leech lattice. Discrete Comput. Geom. 44 (2010), 904–911. Zbl1204.52015MR2728040
- R. Erdahl, A convex set of second-order inhomogeneous polynomials with applications to quantum mechanical many body theory. Mathematical Preprint #1975-40, Queen’s University, Kingston, Ontario, 1975.
- R. Erdahl, A cone of inhomogeneous second-order polynomials. Discrete Comput. Geom. 8 (1992), 387–416. Zbl0773.11042MR1176378
- R. M. Erdahl, K. Rybnikov, Voronoi-Dickson Hypothesis on Perfect Forms and L-types. Peter Gruber Festshrift: Rendiconti del Circolo Matematiko di Palermo, Serie II, Tomo LII, part I (2002), 279–296. Zbl1116.52006
- R.M. Erdahl, A. Ordine, K. Rybnikov, Perfect Delaunay Polytopes and Perfect Quadratic Functions on Lattices. Integer points in polyhedra—geometry, number theory, representation theory, algebra, optimization, statistics, Contemporary Mathematics 452, American Mathematical Society, 2008, 93–114. Zbl1162.52006
- R. Erdahl, K. Rybnikov, An infinite series of perfect quadratic forms and big Delaunay simplices in . Tr. Mat. Inst. Steklova 239 (2002), Diskret. Geom. i Geom. Chisel, 170–178; translation in Proc. Steklov Inst. Math. 239 (2002), 159–167. Zbl1126.11324
- V. Grishukhin, Infinite series of extreme Delaunay polytopes. European J. Combin. 27 (2006), 481–495. Zbl1088.52010MR2215210
- J.-M. Kantor, Lattice polytope: some open problems. AMS Snowbird Proceedings.
- P.W. Lemmens, J.J. Seidel, Equiangular lines. J. Algebra 24 (1973), 494–512. Zbl0255.50005MR307969
- J. Martinet, Perfect lattices in Euclidean spaces. Springer, 2003. Zbl1017.11031MR1957723
- R. E. O’Connor, G. Pall, The construction of integral quadratic forms of determinant . Duke Math. J. 11 (1944), 319–331. Zbl0060.11103MR10153
- W. Plesken, B. Souvignier, Computing isometries of lattices. J. Symbolic Comput. 24 (1997), 327–334. Zbl0882.11042MR1484483
- W. Plesken, Finite unimodular groups of prime degree and circulants. J. of Algebra 97 (1985), 286–312. Zbl0583.20036MR812182
- A. Schürmann, Experimental study of energy-minimizing point configurations on spheres. Amer. Math. Soc. Univ. Lect. Ser. 2009. Zbl1185.68771
- W. Smith, PhD thesis: studies in computational geometry motivated by mesh generation. Department of Applied Mathematics, Princeton University, 1988. MR2637686
- B. B. Venkov, Réseaux et designs sphériques. In Réseaux euclidiens, designs sphériques et formes modulaires, edited by J. Martinet, Monographie numéro 37 de L’enseignement Mathématique, 2001. Zbl1139.11320MR1878745
- G. F. Voronoi, Nouvelles applications des paramètres continus à la théorie des formes quadratiques - Deuxième mémoire. J. für die Reine und Angewandte Mathematik, 134 (1908), 198-287 and 136 (1909), 67–178. Zbl38.0261.01
- N. J. A. Sloane, G. Nebe, A Catalogue of Lattices. http://www2.research.att.com/~njas/lattices/. Software
- M. Dutour Sikirić, polyhedral, http://www.liga.ens.fr/~dutour/Polyhedral/.